Line 12: | Line 12: | ||
<body> | <body> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 07:50, 9 October 2018
Modeling
Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.
Gold Medal Criterion #3
Convince the judges that your project's design and/or implementation is based on insight you have gained from modeling. This could be either a new model you develop or the implementation of a model from a previous team. You must thoroughly document your model's contribution to your project on your team's wiki, including assumptions, relevant data, model results, and a clear explanation of your model that anyone can understand.
The model should impact your project design in a meaningful way. Modeling may include, but is not limited to, deterministic, exploratory, molecular dynamic, and stochastic models. Teams may also explore the physical modeling of a single component within a system or utilize mathematical modeling for predicting function of a more complex device.
Please see the 2018 Medals Page for more information.
Best Model Special Prize
To compete for the Best Model prize, please describe your work on this page and also fill out the description on the judging form. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
Inspiration
Here are a few examples from previous teams:
Living biomaterials are an innovative type of device with wide-ranging implications. Combining the flexibility of living cells with bio-compatible materials, this new class of devices is expected to impact many fields and assist society in dealing with the challenges ahead. Bacteria are a particularly attractive platform since they can be genetically "tailored" to produce many different types of proteins in response to almost any known type of chemical, physical or biological change.
Unfortunately, this potential is held back by challenges like maintaining the viability, functionality and safety of the living components in freestanding materials and devices. One of the biggest challenges in applying this emerging technology to real-world problems is preventing bacterial leakage - while allowing for adequate diffusion of nutrients and products. In our project, we aimed to bring the application of living materials a step closer to being realized. For long months we have worked on our design of a novel platform. Using an adhesive protein originating from arctic bacteria, we successfully reduced bacterial leakage by inducing genetically engineered E. coli to bind to a dextran hydrogel with macroporous character. We used the modularity of our platform in a wound healing application, integrating in our design insights from our models and feedback from stakeholders. We have successfully completed all medal requirements , acquiring a Gold Medal and have managed to demonstate our project in a prototype. Additionally, BBa_K2812004 and BBa_K2812005 were nominated by the jury for Best New Basic Part and Best New Composite Part in the Overgrad competition.