Nabilakhyar (Talk | contribs) |
Nabilakhyar (Talk | contribs) |
||
Line 31: | Line 31: | ||
<h1 style="text-align: center;"><strong>Collaborations</strong></h1> | <h1 style="text-align: center;"><strong>Collaborations</strong></h1> | ||
<div class="column two_third_size"> | <div class="column two_third_size"> | ||
− | <h2 style="text-align: justify;"><strong>Iowa iGEM 2018 Team</strong><strong> | + | <h2 style="text-align: justify;"><strong>Iowa iGEM 2018 Team</strong><strong></strong></h2> |
<p style="text-align: justify;">In the spirit of collaboration, our team is excited to be working with the University of Iowa iGEM team this year. The Iowa 2018 team is developing a biosensor for the detection and quantification of 3-hydroxypropionate (3HP), a natural plastic precursor with considerable importance in the industrial production of bioplastics.</p> | <p style="text-align: justify;">In the spirit of collaboration, our team is excited to be working with the University of Iowa iGEM team this year. The Iowa 2018 team is developing a biosensor for the detection and quantification of 3-hydroxypropionate (3HP), a natural plastic precursor with considerable importance in the industrial production of bioplastics.</p> | ||
<p style="text-align: justify;">In order to produce a co-polymer such as polyhydroxybutyrate-co-valerate PHBV, the monomer 3-hydroxyvaleryl-CoA (3HV) can be introduced via the precursor propionyl-CoA. Currently, the necessity of propionate or propionyl-CoA is a limiting factor in production of PHBV, which has potential to become a versatile polymer in the commercial setting today. With our metabolic engineering strategy inspired by that of Srirangan et al. (2016), the <em>E. coli</em> can be modified to produce PHBV from substrates such as glucose or glycerol, exempting the need for direct feed with propionic acid. This requires the activation of a cluster of genes called the Sleeping Beauty Mutase (SBM) operon, which has been inactivated through multiple evolutionary selections, that encodes for the net conversion of succinyl-CoA into propionyl-CoA (Figure 1).</p> | <p style="text-align: justify;">In order to produce a co-polymer such as polyhydroxybutyrate-co-valerate PHBV, the monomer 3-hydroxyvaleryl-CoA (3HV) can be introduced via the precursor propionyl-CoA. Currently, the necessity of propionate or propionyl-CoA is a limiting factor in production of PHBV, which has potential to become a versatile polymer in the commercial setting today. With our metabolic engineering strategy inspired by that of Srirangan et al. (2016), the <em>E. coli</em> can be modified to produce PHBV from substrates such as glucose or glycerol, exempting the need for direct feed with propionic acid. This requires the activation of a cluster of genes called the Sleeping Beauty Mutase (SBM) operon, which has been inactivated through multiple evolutionary selections, that encodes for the net conversion of succinyl-CoA into propionyl-CoA (Figure 1).</p> |
Revision as of 06:16, 13 October 2018