Nabilakhyar (Talk | contribs) |
Nabilakhyar (Talk | contribs) |
||
Line 52: | Line 52: | ||
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="https://static.igem.org/mediawiki/2018/7/7c/T--Edinburgh_OG--Collab_-_3.png" width="646" height="356" /></p> | <p><img style="display: block; margin-left: auto; margin-right: auto;" src="https://static.igem.org/mediawiki/2018/7/7c/T--Edinburgh_OG--Collab_-_3.png" width="646" height="356" /></p> | ||
<p style="text-align: center;"><strong>Figure 3</strong> Proposed route of PHA synthesis in <em>P. putida</em>. Above is the TOD pathway for styrene degradation (Westminster iGEM Team). Below is the PHA operon for PHA. The PHA responsible production genes have their homologues in <em>P. putida</em> according to O’Leary, et al., 2005.</p> | <p style="text-align: center;"><strong>Figure 3</strong> Proposed route of PHA synthesis in <em>P. putida</em>. Above is the TOD pathway for styrene degradation (Westminster iGEM Team). Below is the PHA operon for PHA. The PHA responsible production genes have their homologues in <em>P. putida</em> according to O’Leary, et al., 2005.</p> | ||
− | + | ||
+ | |||
<h2 style="text-align: justify;"><strong>References</strong></h2> | <h2 style="text-align: justify;"><strong>References</strong></h2> | ||
<p style="text-align: justify;">Phechkrajang, C.M. & Yooyong, S., 2017. Fast and simple method for semiquantitative determination of calcium propionate in bread samples. <em>Journal of Food and Drug Analysis</em>, 25(2), pp.254–259. Available at: http://www.sciencedirect.com/science/article/pii/S1021949816300552.</p> | <p style="text-align: justify;">Phechkrajang, C.M. & Yooyong, S., 2017. Fast and simple method for semiquantitative determination of calcium propionate in bread samples. <em>Journal of Food and Drug Analysis</em>, 25(2), pp.254–259. Available at: http://www.sciencedirect.com/science/article/pii/S1021949816300552.</p> | ||
<p style="text-align: justify;">Rogers, J.K. & Church, G.M., 2016. Genetically encoded sensors enable real-time observation of metabolite production. <em>Proceedings of the National Academy of Sciences</em>, 113(9), pp.2388–2393. Available at: http://www.pnas.org/lookup/doi/10.1073/pnas.1600375113.</p> | <p style="text-align: justify;">Rogers, J.K. & Church, G.M., 2016. Genetically encoded sensors enable real-time observation of metabolite production. <em>Proceedings of the National Academy of Sciences</em>, 113(9), pp.2388–2393. Available at: http://www.pnas.org/lookup/doi/10.1073/pnas.1600375113.</p> | ||
<p style="text-align: justify;">Srirangan, K. et al., 2016. Engineering of <em>Escherichia coli</em> for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources. <em>Scientific Reports</em>, 6(October), pp.1–11. Available at: http://dx.doi.org/10.1038/srep36470.</p> | <p style="text-align: justify;">Srirangan, K. et al., 2016. Engineering of <em>Escherichia coli</em> for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources. <em>Scientific Reports</em>, 6(October), pp.1–11. Available at: http://dx.doi.org/10.1038/srep36470.</p> | ||
− | <p style="text-align: justify;"> </p> | + | <p style="text-align: justify;">O'Leary, N. D., O'Connor, K. E., Ward, P., Goff, M., & Dobson, A. D. (2005). Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in <em>Pseudomonas putida</em> CA-3. <em>Applied and environmental microbiology</em>, <em>71</em>(8), 4380-4387.</p> |
</div> | </div> | ||
</div> | </div> |
Revision as of 13:27, 14 October 2018