Nabilakhyar (Talk | contribs) |
Nabilakhyar (Talk | contribs) |
||
Line 36: | Line 36: | ||
<p><br /><img style="display: block; margin-left: auto; margin-right: auto;" src="https://static.igem.org/mediawiki/2018/c/cc/T--Edinburgh_OG--Collab_-_proposed_mechanism.png" width="692" height="393" /></p> | <p><br /><img style="display: block; margin-left: auto; margin-right: auto;" src="https://static.igem.org/mediawiki/2018/c/cc/T--Edinburgh_OG--Collab_-_proposed_mechanism.png" width="692" height="393" /></p> | ||
<p style="text-align: justify;"><strong>Figure 1. </strong>Proposed mechanism for propionate synthesis via the evolutionarily dormant Sleeping Beauty mutase operon (SBM) and a complementary methylmalonyl-CoA epimerase (MCE). Succinyl-CoA is converted into (<em>R</em>)-methylmalongyl-CoA by the methylmalonyl-CoA mutase (encoded by <em>scpA</em>). The compound is then converted into its stereoisomer (<em>S</em>)-methylmalonyl-CoA via MCE. The isomer is the form required for the stereospecific conversion into propionyl-CoA by methylmalonyl-CoA carboxylase (<em>scpB</em>). The CoA from propionyl-CoA is transferred onto succinate from the citric acid cycle by the propionyl-CoA: succinate CoA transferase (<em>scpC</em>), culminating in the biosynthesis of propionate and succinyl-CoA.</p> | <p style="text-align: justify;"><strong>Figure 1. </strong>Proposed mechanism for propionate synthesis via the evolutionarily dormant Sleeping Beauty mutase operon (SBM) and a complementary methylmalonyl-CoA epimerase (MCE). Succinyl-CoA is converted into (<em>R</em>)-methylmalongyl-CoA by the methylmalonyl-CoA mutase (encoded by <em>scpA</em>). The compound is then converted into its stereoisomer (<em>S</em>)-methylmalonyl-CoA via MCE. The isomer is the form required for the stereospecific conversion into propionyl-CoA by methylmalonyl-CoA carboxylase (<em>scpB</em>). The CoA from propionyl-CoA is transferred onto succinate from the citric acid cycle by the propionyl-CoA: succinate CoA transferase (<em>scpC</em>), culminating in the biosynthesis of propionate and succinyl-CoA.</p> | ||
− | |||
<p style="text-align: justify;">However, even if the conversion is successful it is difficult to verify a successful trial due to limitations in the capacity to detect production of the precursors culminating in the 3HV monomer. An assay that our team has developed to measure the quantity of propionate produced informed by the work of Phechkrajang & Yooyong (2017) was ultimately unsuccessful.</p> | <p style="text-align: justify;">However, even if the conversion is successful it is difficult to verify a successful trial due to limitations in the capacity to detect production of the precursors culminating in the 3HV monomer. An assay that our team has developed to measure the quantity of propionate produced informed by the work of Phechkrajang & Yooyong (2017) was ultimately unsuccessful.</p> | ||
<p style="text-align: justify;">To our joy, we were happy to discover that the Iowa team may have just the answer to our prayers! As can be seen in Figure 2, the 3HP biosensor they have developed may be applicable in the direct detection of the propionyl-CoA synthesized via the SBM pathway. Motivated by a 2016 paper by Rogers & Church, we surmised that a 3HP biosensor that relies on the conversion of 3HP via <em>pcs </em>and <em>prpC </em>into a quantifiable fluorescence readout may be modified to directly quantify the biogenesis of propionyl-CoA, one of the intermediate compounds in this pathway!</p> | <p style="text-align: justify;">To our joy, we were happy to discover that the Iowa team may have just the answer to our prayers! As can be seen in Figure 2, the 3HP biosensor they have developed may be applicable in the direct detection of the propionyl-CoA synthesized via the SBM pathway. Motivated by a 2016 paper by Rogers & Church, we surmised that a 3HP biosensor that relies on the conversion of 3HP via <em>pcs </em>and <em>prpC </em>into a quantifiable fluorescence readout may be modified to directly quantify the biogenesis of propionyl-CoA, one of the intermediate compounds in this pathway!</p> | ||
− | |||
<p> <img style="display: block; margin-left: auto; margin-right: auto;" src="https://static.igem.org/mediawiki/2018/2/2f/T--Edinburgh_OG--Collab_-_expectation.png" alt="" width="689" height="243" /></p> | <p> <img style="display: block; margin-left: auto; margin-right: auto;" src="https://static.igem.org/mediawiki/2018/2/2f/T--Edinburgh_OG--Collab_-_expectation.png" alt="" width="689" height="243" /></p> | ||
− | |||
<p style="text-align: justify;"><strong>Figure 2. </strong>The designated pathway through which our team expects to detect the production of propionyl-CoA from our <em>sbm+</em> (woke AF) <em>E. coli</em>. This is taken from one of the potential pathways that a 3HP biosensor can be developed: by converting 3HP to 2-methylcitrate, fluorescence output can be quantified. Given this possibility, a modified biosensor (comprising <em>prpC</em>) may be used to detect the production of propionyl-CoA directly through a similar means of fluorescence readout.</p> | <p style="text-align: justify;"><strong>Figure 2. </strong>The designated pathway through which our team expects to detect the production of propionyl-CoA from our <em>sbm+</em> (woke AF) <em>E. coli</em>. This is taken from one of the potential pathways that a 3HP biosensor can be developed: by converting 3HP to 2-methylcitrate, fluorescence output can be quantified. Given this possibility, a modified biosensor (comprising <em>prpC</em>) may be used to detect the production of propionyl-CoA directly through a similar means of fluorescence readout.</p> | ||
− | + | ||
− | + | ||
<h2 style="text-align: justify;"><strong>Westminster iGEM 2018 team</strong></h2> | <h2 style="text-align: justify;"><strong>Westminster iGEM 2018 team</strong></h2> | ||
<p style="text-align: justify;"> </p> | <p style="text-align: justify;"> </p> |
Revision as of 13:30, 14 October 2018