Line 188: | Line 188: | ||
</div> | </div> | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/e/e4/T--RDFZ-China--footerimg.png" alt="footer" style="width:1263px;position:relative;margin-top:-7px;margin-bottom:-23px;background-color:#4F5953" /> |
</div> | </div> | ||
<script> | <script> |
Revision as of 23:43, 14 October 2018
Genetically engineered bacteria or yeast have the potential to serve in wide range of fields. For example, manufacturing in chemical plants, drug delivery, as well as detectors aiming at various substance include disease detection or chemical pollutant. When it comes to application, the regulation of gene expression is not only the only rising issue, but also the resilience of these engineered organism that we need to concern.
Based on our research about previous years’ project, there are considerable amount of the engineered bacteria needs to work in extreme conditions: fluctuating temperatures, osmotic stress, mutagenic radiations and extreme pH in their working conditions. Of course organisms will have inborn method to couple with these stress, however there is a limit, and what we are trying to do is to extend it using our knowledge about synthetic biology.
Besides interviews Biosafety inside lab is a great concern.
Turns out that tardigrades are able to reversibly switching to ametabolic state - a process called anhydrobiosis, and in the anhydrobiotic state, they can tolerate extreme conditions.
Therefore, team SIAT-SCIE 2017 is focusing on how we can transform the of resilience of tardigrades into the engineered organism, increasing their effectiveness of working and gives them greater potential to be put into actual practice.