Line 17: | Line 17: | ||
<p> </p> | <p> </p> | ||
<p style="padding-left: 90px;">Currently, over 150 different monomers of PHA have been identified, with a huge range of properties. Poly(3-hydroxybutyrate) (PHB), the simplest PHA, was the first identified, and remains the most studied PHA, and has properties similar to polystyrene and polypropylene –highly crystalline, and brittle. Despite it being able to be utilised in much of the existing infrastructure –in injection moulding and other processes -it possesses a very narrow processing range, limiting its use. One way of combatting such difficulties is to incorporate different monomers into the polymer chain, forming co-polymers and even ter-polymers. By introducing such monomers into the chain, the crystallinity of the resulting material is disrupted, producing a more flexible plastic, and is frequently easier to process (Babu, et al., 2013).</p> | <p style="padding-left: 90px;">Currently, over 150 different monomers of PHA have been identified, with a huge range of properties. Poly(3-hydroxybutyrate) (PHB), the simplest PHA, was the first identified, and remains the most studied PHA, and has properties similar to polystyrene and polypropylene –highly crystalline, and brittle. Despite it being able to be utilised in much of the existing infrastructure –in injection moulding and other processes -it possesses a very narrow processing range, limiting its use. One way of combatting such difficulties is to incorporate different monomers into the polymer chain, forming co-polymers and even ter-polymers. By introducing such monomers into the chain, the crystallinity of the resulting material is disrupted, producing a more flexible plastic, and is frequently easier to process (Babu, et al., 2013).</p> | ||
− | <p style="padding-left: 90px;">One of the most studied PHB | + | <p style="padding-left: 90px;">One of the most studied PHB copolymers is poly-(3-hydroxybutyrate-3-hydroxyvalerate) or PHBV due to its highly versatile applications. Higher amount of HV content in PHBV decreases the melting point – it was reported that the melting point of PHBV samples were about 100-150°C whereas the degradation temperatures were more than 220°C which will indefinitely increase PHBV’s flexibility and ductility (Wang, et al., 2013). In addition, higher HV content also increases the degradation rate. It was shown that within 19 weeks of degradation in pH 7.4 phosphate buffer medium, the mass loss experienced by PHBV with 5 mol% and 12 mol% were approximately 6.2% and 9.2%, respectively (Liu, Pancholi, and Raghavan, 2010).</p> |
<p style="padding-left: 90px;"> </p> | <p style="padding-left: 90px;"> </p> | ||
<h3 style="padding-left: 90px;"><span style="text-decoration: underline;"><strong>Reference</strong></span></h3> | <h3 style="padding-left: 90px;"><span style="text-decoration: underline;"><strong>Reference</strong></span></h3> |
Revision as of 21:08, 17 October 2018