Difference between revisions of "Team:UNSW Australia"

m
 
(267 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{Template:UNSW_Australia/Navbar}}
 
{{Template:UNSW_Australia/Navbar}}
 +
{{Template:UNSW_Australia/Basics}}
  
 
<html>
 
<html>
  
<div id="mainContainer>
+
<div id="home-content">
<div class ="body">
+
                <div id="loading-image" class="shadow">
                <div id="loading-image">
+
                        <div id="background-image">
                         <div id="img-loading-image"></span>
+
                            <img src="https://static.igem.org/mediawiki/2018/c/cf/T--UNSW_Australia--Loading.png">
 +
                        </div>
 +
                        <div class="flex-center">
 +
                         <div id="header-text" width="50%">
 +
                                <h1 class="shadow-text main-heading">ASSEMBLASE</h1>
 +
                                <h2>Covalently <span class="red-text">Co-localising Enzymes</span> in a <span class="red-text">Modular</span> System</h2>
 +
                        </div>
 +
                        </div>
 +
                </div>
 +
 
 +
<div id="gif-div">
 +
    <div id="unscaffolded" class="gif-box flex-center">
 +
        <div class="gif-img">
 +
            <img class="left-gif" src="https://static.igem.org/mediawiki/2018/d/d8/T--UNSW_Australia--Unscaffolded.gif">
 
         </div>
 
         </div>
 +
        <div class="gif-text">
 +
            <p class="big-text">Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects. </p>
 +
<p class="big-text">The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the <b>Assemblase self-assembling scaffold system</b> as the solution to this problem.</p>
 +
            <p class="big-text">The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes. </p>
 +
<p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Description">description page</a> to find out how our system has been constructed.</p>
  
<div class="content">
+
        </div>
<h3><b>Our Project</b></h3>
+
    </div>
<p>Enzymes are biological catalysts which speed up chemical reactions, and are often part of sequential pathways. The speed of these chemical reactions is essential to the viability and efficiency of processes across many industries, including: pharmaceuticals, waste management and food production. However, many of these reactions are slowed down by significant distances between enzyme catalysts in solution, which can then also lead to unwanted reactions involving intermediate substrates in multi-step reactions.</p>
+
    <div id="scaffolded" class="gif-box flex-center">
<div class="image-div">
+
        <div class="gif-text">
<img class="single-img" src="https://static.igem.org/mediawiki/2018/6/6f/T--UNSW_Australia--Enzyme1.jpg">
+
            <p class="big-text">Our Assemblase scaffold has a range of advantages that make it ideal for a variety of applications. This includes it being highly thermostable and chemically resistant permiting our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.</p>
</div>
+
  
<p>We have designed a novel protein scaffold onto which we can attach the enzymes of any pathway, creating an assembly line of chemical reactions. By bringing several enzymes together onto a scaffold, we can control (and reduce) the distance the intermediate products of a reaction are required to diffuse to reach the next enzyme. We hope to demonstrate greatly increased rates of reaction, which may be quite useful in many industrial processes, and discuss implications of this with various stakeholders; particularly those in industry.</p>
+
<p class="big-text">The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. </p>
<div class="image-div">
+
<p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Design">design page</a> to find out how we chose the best components for our system.</p>
<img class="double-img" src="https://static.igem.org/mediawiki/2018/9/9d/T--UNSW_Australia--Enzyme2.jpg">
+
        </div>
<img class="double-img" src="https://static.igem.org/mediawiki/2018/1/10/T--UNSW_Australia--Enzyme3.jpg">
+
        <div class="gif-img">
</div>
+
            <img class="right-gif" src="https://static.igem.org/mediawiki/2018/5/5f/T--UNSW_Australia--Scaffolded.gif">
<p>We are aiming to speed up biochemical reactions so that we can increase their level of productivity. This research doesn't just help scientists gain a new perspective on enzymatic reactions; it also has real world applications. Speeding up biochemical reactions could lower the cost and time of production for many everyday items, such as antibiotics, laundry detergent, and fermented food and beverages. Furthermore, our enzyme scaffold could also be used in the bioremediation and degradation of pollutants in our environment, such as plastics and petro-chemicals, to make them non-toxic. We project that the   use of our scaffold with relevant bioremediation enzymes may lower the time required to restore our environment to its prior healthy state.</p>
+
        </div>
 +
    </div>
 +
    <div id="unscaffolded" class="gif-box flex-center">
 +
        <div class="gif-img">
 +
            <img class="left-gif" src="https://static.igem.org/mediawiki/2018/5/53/T--UNSW_Australia--TeamD-01.png">
 +
        </div>
 +
        <div class="gif-text">
 +
            <p class="big-text">Over the past few months we have been busy <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Cloning">cloning DNA</a>, expressing and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Protein">purifying some really cool proteins</a>, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.</p>
 +
<p class="big-text">We also got to perform some really awesome <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Assays">enzyme assays</a> and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/FRET">FRET</a> experiments, alongside modelling our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/EKD">enzyme kinetics</a> with some mathematical magic.</p>
 +
<p class="big-text">On top of this, we executed <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/MD">molecular dynamics</a> analysis, and grew our <a class="red-link" target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Plants">very own plants</a> on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM!
 +
                </p>
 +
        </div>
 +
    </div>
 +
</div>
  
<br />
 
<br />
 
  
<h3><b>Our Team</b></h3>
+
<div id="links">
<p>This year UNSW is entering its largest and most interdisciplinary team yet. We are made up of eleven undergraduate students, with backgrounds in the medical sciences, cell and molecular biology, engineering, education, and law. We are all enthusiastic about scientific research and excited about our project, which we hope to use to expand the synthetic biologist’s toolkit.</p>
+
<h2 class="text-center">Explore Our Project</h2>
<div class="image-div">
+
<br/>
<img id="team-photo" src="https://static.igem.org/mediawiki/2018/b/b6/T--UNSW_Australia--TeamPhoto.jpg">
+
<div class="flex-center">
</div>
+
<div id=description-icon>
 +
<a href="https://2018.igem.org/Team:UNSW_Australia/Description"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/e/ea/T--UNSW_Australia--Description_Icon.png></a>
 +
<p class="text-center big-text">Description</p>
 +
</div>
 +
</div>
 +
<div class="flex-center">
 +
<div id=lab-icon>
 +
  <a href="https://2018.igem.org/Team:UNSW_Australia/Lab"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/8/8d/T--UNSW_Australia--Icon-lab.png></a>
 +
  <p class="text-center big-text">Lab</p>
 +
</div>
 +
<div id=hp-icon>
 +
<a href="https://2018.igem.org/Team:UNSW_Australia/Human_Practices"><img class='link-icon' src="https://static.igem.org/mediawiki/2018/3/33/T--UNSW_Australia--Icon-hp.png"></a>
 +
<p class="text-center big-text">Human Practices</p>
 +
</div>
 +
</div>
 +
<div class="flex-center">
 +
<div id=design-icon>
 +
  <a href=https://2018.igem.org/Team:UNSW_Australia/Design><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/9b/T--UNSW_Australia--Icon-project.png></a>
 +
  <p class="text-center big-text">Design</p>
 +
</div>
 +
<div id=modelling-icon>
 +
  <a href="https://2018.igem.org/Team:UNSW_Australia/Model"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/4/44/T--UNSW_Australia--Icon-modelling.png></a>
 +
  <p class="text-center big-text">Modelling</p>
 +
</div>
 +
</div>
 +
<div class="flex-center">
 +
<div id=team-icon>
 +
<a href="https://2018.igem.org/Team:UNSW_Australia/Team"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/97/T--UNSW_Australia--Icon-people.png></a>
 +
  <p class="text-center big-text">Team</p>
 +
</div>
 +
</div>
 +
<br/>
  
</div>
+
<div height="350px" width="100%">
</div>
+
 
</div>
 
</div>
  
<!-- Set up JavaScript and JQuery -->
+
<div class="flex-center" id="sponsor-footer">
<script src="https://code.jquery.com/jquery-3.2.1.js"></script>
+
<img src=https://static.igem.org/mediawiki/2018/1/13/T--UNSW_Australia--sponsor-homepage.png>
<script type="text/javascript" src="./Home.js"></script>
+
</div>
 +
 
 +
</div>
  
</body>
 
  
 
<style>
 
<style>
 +
#home-content {
  
/* Main Banner */
+
}
 +
 
 +
/* Main Banner Image */
 +
 
 +
#home-content {
 +
 
 +
}
 +
 
 +
#sponsor-footer {
 +
  background-color: #333;
 +
  height: 150px;
 +
  width: 100%;
 +
  position: absolute;
 +
  bottom: 20px;
 +
  padding-top: 20px;
 +
}
 +
 
 +
#footer p {
 +
  z-index: 3;
 +
}
 +
 
 +
#sponsor-footer img {
 +
  z-index: 2;
 +
  height: 150px;
 +
}
 +
 
 +
#content {
 +
  padding-top: 0px;
 +
}
 +
 
 +
 
 +
@keyframes fade-in {
 +
  0%  {opacity: 0}
 +
  40% {opacity: 0}
 +
  100% {opacity: 1}
 +
}
 +
 
 +
 
 +
.circular-button {
 +
  background-color: #dbdbdb;
 +
  position: relative;
 +
}
  
 
#loading-image {
 
#loading-image {
margin: 0;
+
        padding-top: 50px;
         padding-top: 120px;
+
animation-name: fade-in;
height: 500px;
+
         animation-duration: 3s;
 +
        margin: 0;
 
         width: 100%;
 
         width: 100%;
 +
        height: 80vh;
 +
        padding-bottom: 30px;
 
}
 
}
  
#img-loading-image {
+
#background-image {
        height: 500px;
+
  height: 80vh;
        width: 100%;
+
        background-image: url(https://static.igem.org/mediawiki/2018/c/cf/T--UNSW_Australia--Loading.png);
+
        background-position: cover;
+
 
}
 
}
  
#hero h1 {
+
.text-center {
display: inline-block;
+
  text-align: center !important;
font-size: 60px;
+
 
}
 
}
  
#hero h3 {
+
#background-image img {
font-size: 23px;
+
  width: 100%;
color: #aaa;
+
  top: 50%;
 +
  transform: translateY(-50%);
 +
  position: relative;
 
}
 
}
  
.red {
+
#header-text {
color: #e40042;
+
        width: 100vw;
 +
        position: relative;
 +
        top: -50vh;
 +
        text-align: center !important;
 
}
 
}
  
.grey {
+
.main-heading {
color: #3f3f3f;
+
  font-size: 3.5rem !important;
 
}
 
}
  
#hero img {
+
#header-text h2 {
width: 100%;
+
  font-size: 2rem !important;
float: right;
+
  width: 50%;
 +
  margin: 0 auto;
 +
  line-height: 1.2;
 +
  padding: 0;
 
}
 
}
  
 +
.red-text {
 +
  color: #9b3131;
 +
}
  
/* Content Menu */
+
#abstract {
.content {
+
  margin: 5px 10%;
margin-bottom: 50px;
+
  padding-bottom: 50px;
margin: 20px;
+
font-size: 1.1rem;
+
 
}
 
}
  
.content h3 {
+
#abstract p, #abstract h2 {
font-size: 1.5rem;
+
  text-align: center !important;
text-transform: uppercase;
+
 
}
 
}
  
.image-div {
+
#gif-div {
display: flex;
+
  width: 100vw;
justify-content: center;
+
  background-color: #f0f0f0;
margin: 10px 0;
+
  animation-name: fade-in;
 +
  animation-duration: 5s;
 
}
 
}
  
.single-img {
+
.gif-img img {
width: 100%;
+
    margin: 30px;
height: 100%;
+
    border: 1px solid #f0f0f0;
max-width: 700px;
+
    width: 35vw;
max-height: 500px;
+
    height: 30vw;
 +
    border-radius: 10px;
 
}
 
}
  
.double-img {
+
.gif-text {
width: 50%;
+
  margin: auto 10px;
height: 50%;
+
max-height: 400px;
+
max-width: 350px;
+
margin: 5px;
+
 
}
 
}
  
#team-photo {
+
.gif-box h2 {
width: 100%;
+
  text-align: center !important;
max-width: 800px;
+
height: 100%;
+
box-shadow: 5px 5px 5px #888;
+
 
}
 
}
  
/* Collaborations */
+
.gif-box p {
#collaborations {
+
  width: 50vw;
display: flex;
+
justify-content: center;
+
 
}
 
}
  
#collaborations a {
+
#description-icon {
text-decoration: none;
+
    margin: 0 auto -80px auto !important;
 
}
 
}
  
.collab-box {
+
#lab-icon {
display: flex;
+
    margin: auto 100px 0 0 !important;
margin: 20px;
+
 
}
 
}
  
.collab-content h4 {
+
#hp-icon {
padding-top: 60px;
+
    margin: auto 0 0 100px !important;
margin: 10px;
+
font-size: 25px;
+
text-transform: uppercase;
+
 
}
 
}
  
.collab-content p {
+
#design-icon {
margin: 10px;
+
    margin: 0 100px auto 0 !important;
font-size: 18px;
+
}
}
+
  
@media (min-width: 700px) {
+
#modelling-icon {
.collab-content {
+
    margin: 0 0 auto 100px !important;
display: inline-block;
+
}
height: 300px;
+
width: 300px;
+
color: white;
+
text-align: center;
+
opacity: 0;
+
background-color: rgba(0, 0, 0, 0.6);
+
}
+
  
.collab-content h4 {
+
#team-icon {
padding-top: 60px;
+
    margin: -80px auto 0 auto !important;
margin: 10px;
+
}
font-size: 25px;
+
text-transform: uppercase;
+
                color: white;
+
}
+
  
.collab-content p {
+
#links {
margin: 10px;
+
  height: 850px;
font-size: 18px;
+
}
                color: white;
+
}
+
  
.collab-content:hover {
+
#links h2 {
opacity: 1;
+
  font-size: 2.5rem;
}
+
  padding-bottom: 30px;
 +
}
  
#skill-share {
+
.link-icon {
background-image: url(https://static.igem.org/mediawiki/2018/a/ae/T--UNSW_Australia--WikiCollab.jpg);
+
  height: 150px;
background-size: 100%;
+
  width: 150px;
}
+
  cursor: pointer;
 +
  opacity: 0.7;
 +
  filter: grayscale(40%);
 +
}
 +
 
 +
.link-icon:hover {
 +
  opacity: 1;
 +
  filter: grayscale(0%);
 +
}
 +
 
 +
.big-text {
 +
  font-size: 1.3rem !important;
 +
}
 +
.red-link:link {
 +
    color: #9b3131;
 +
    background-color: transparent;
 +
    text-decoration: none;
 +
}
 +
 
 +
.red-link:visited {
 +
    color: #9b3131;
 +
    background-color: transparent;
 +
    text-decoration: none;
 +
}
  
#fav-enzyme {
+
.red-link:hover {
background-image: url(https://static.igem.org/mediawiki/2018/9/96/T--UNSW_Australia--EnzymeCollab.jpg);
+
    color: #c95d5d;
background-size: 100%;
+
    background-color: transparent;
}
+
    text-decoration: underline;
 
}
 
}
 
</style>
 
</style>

Latest revision as of 02:24, 18 October 2018

ASSEMBLASE

Covalently Co-localising Enzymes in a Modular System

Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects.

The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the Assemblase self-assembling scaffold system as the solution to this problem.

The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes.

Head over to our description page to find out how our system has been constructed.

Our Assemblase scaffold has a range of advantages that make it ideal for a variety of applications. This includes it being highly thermostable and chemically resistant permiting our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.

The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. 

Head over to our design page to find out how we chose the best components for our system.

Over the past few months we have been busy cloning DNA, expressing and purifying some really cool proteins, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.

We also got to perform some really awesome enzyme assays and FRET experiments, alongside modelling our enzyme kinetics with some mathematical magic.

On top of this, we executed molecular dynamics analysis, and grew our very own plants on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM!