Difference between revisions of "Team:UNSW Australia"

 
(96 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{Template:UNSW_Australia/Navbar}}
 
{{Template:UNSW_Australia/Navbar}}
{{UNSW_Australia/Basics}}
+
{{Template:UNSW_Australia/Basics}}
  
 
<html>
 
<html>
Line 18: Line 18:
  
 
<div id="gif-div">
 
<div id="gif-div">
<div id="unscaffolded" class="gif-box flex-center">
+
    <div id="unscaffolded" class="gif-box flex-center">
<div class="gif-img">
+
        <div class="gif-img">
<img class="left-gif" src="https://static.igem.org/mediawiki/2018/d/d8/T--UNSW_Australia--Unscaffolded.gif">
+
            <img class="left-gif" src="https://static.igem.org/mediawiki/2018/d/d8/T--UNSW_Australia--Unscaffolded.gif">
 +
        </div>
 +
        <div class="gif-text">
 +
            <p class="big-text">Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects. </p>
 +
<p class="big-text">The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the <b>Assemblase self-assembling scaffold system</b> as the solution to this problem.</p>
 +
            <p class="big-text">The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes. </p>
 +
<p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Description">description page</a> to find out how our system has been constructed.</p>
 +
 
 +
        </div>
 +
    </div>
 +
    <div id="scaffolded" class="gif-box flex-center">
 +
        <div class="gif-text">
 +
            <p class="big-text">Our Assemblase scaffold has a range of advantages that make it ideal for a variety of applications. This includes it being highly thermostable and chemically resistant permiting our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.</p>
 +
 
 +
<p class="big-text">The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. </p>
 +
<p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Design">design page</a> to find out how we chose the best components for our system.</p>
 +
        </div>
 +
        <div class="gif-img">
 +
            <img class="right-gif" src="https://static.igem.org/mediawiki/2018/5/5f/T--UNSW_Australia--Scaffolded.gif">
 +
        </div>
 +
    </div>
 +
    <div id="unscaffolded" class="gif-box flex-center">
 +
        <div class="gif-img">
 +
            <img class="left-gif" src="https://static.igem.org/mediawiki/2018/5/53/T--UNSW_Australia--TeamD-01.png">
 +
        </div>
 +
        <div class="gif-text">
 +
            <p class="big-text">Over the past few months we have been busy <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Cloning">cloning DNA</a>, expressing and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Protein">purifying some really cool proteins</a>, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.</p>
 +
<p class="big-text">We also got to perform some really awesome <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Assays">enzyme assays</a> and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/FRET">FRET</a> experiments, alongside modelling our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/EKD">enzyme kinetics</a> with some mathematical magic.</p>
 +
<p class="big-text">On top of this, we executed <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/MD">molecular dynamics</a> analysis, and grew our <a class="red-link" target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Plants">very own plants</a> on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM!
 +
                </p>
 +
        </div>
 +
    </div>
 
</div>
 
</div>
<div class="gif-text">
+
 
<p>Many industrial biocatalytic pathways are limited in their efficiency by diffusion of reaction intermediates. In order to increase the rate and product yield of such reactions, the UNSW iGEM team has designed the self-assembling Assemblase scaffolding system, and established proof of principle.</p>
+
 
<p>Proof of principle was tested on the indole acetic acid biosynthesis pathway, and future plans include testing this scaffold with other more commercially viable pathways such as the Taxol side-chain biosynthesis pathway.</p>
+
<div id="links">
<p>This novel protein scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrate can be channelled between enzymes at a much more efficient rate, thanks to the increased concentration of metabolic intermediates in the immediate surroundings of the enzymes.</p>
+
<h2 class="text-center">Explore Our Project</h2>
<p>As a consequence of its modular design, the Assemblase scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis.</p>
+
<br/>
 +
<div class="flex-center">
 +
<div id=description-icon>
 +
<a href="https://2018.igem.org/Team:UNSW_Australia/Description"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/e/ea/T--UNSW_Australia--Description_Icon.png></a>
 +
<p class="text-center big-text">Description</p>
 
</div>
 
</div>
 
</div>
 
</div>
<div id="scaffolded" class="gif-box flex-center">
+
<div class="flex-center">
<div class="gif-text">
+
<div id=lab-icon>
<p>The Assemblase scaffold is a heterohexamer, composed of two alpha prefoldin and four beta prefoldin subunits. These prefoldin subunits have been fused to Spy and Snoop Catchers, which covalently bind to Spy and Snoop Tags fused to enzymes of interest.</p>
+
  <a href="https://2018.igem.org/Team:UNSW_Australia/Lab"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/8/8d/T--UNSW_Australia--Icon-lab.png></a>
<p>The design of the Assemblase scaffold has a number of advantages. Firstly, as prefoldin is a chaperone protein derived from thermophilic archaea, our scaffold is highly thermostable and chemically resistant. This permits our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis. We also elected to utilise the Spy/Snoop Catcher-Tag systems because of their modularity and low rate of cross-reactivity. Additionally, this attachment mechanism only requires small tags to be fused onto any enzymes entering the system, and these are unlikely to interfere with enzyme functionality. The attachment of the Spy/Snoop Catchers with Tags is also permanent, and not reversed by boiling or competing peptides.</p>
+
  <p class="text-center big-text">Lab</p>
<p>The Assemblase scaffold is therefore an incredibly useful foundational tool that may be adapted to co-localise a variety of enzymes for substrate channelling, which could have positive implications for a range of potential applications.</p>
+
 
</div>
 
</div>
<div class="gif-img">
+
<div id=hp-icon>
<img class="right-gif" src="https://static.igem.org/mediawiki/2018/5/5f/T--UNSW_Australia--Scaffolded.gif">
+
<a href="https://2018.igem.org/Team:UNSW_Australia/Human_Practices"><img class='link-icon' src="https://static.igem.org/mediawiki/2018/3/33/T--UNSW_Australia--Icon-hp.png"></a>
 +
<p class="text-center big-text">Human Practices</p>
 
</div>
 
</div>
</div>
 
 
<div id="links">
 
 
<div id=description-icon class="circular-button">Description
 
 
</div>
 
</div>
 
<div class="flex-center">
 
<div class="flex-center">
<div id=lab-icon class="circular-button">Lab
+
<div id=design-icon>
 +
  <a href=https://2018.igem.org/Team:UNSW_Australia/Design><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/9b/T--UNSW_Australia--Icon-project.png></a>
 +
  <p class="text-center big-text">Design</p>
 
</div>
 
</div>
<div id=hp-icon class="circular-button">Human Practices
+
<div id=modelling-icon>
 +
  <a href="https://2018.igem.org/Team:UNSW_Australia/Model"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/4/44/T--UNSW_Australia--Icon-modelling.png></a>
 +
  <p class="text-center big-text">Modelling</p>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="flex-center">
 
<div class="flex-center">
<div id=design-icon class="circular-button">Design
+
<div id=team-icon>
 +
<a href="https://2018.igem.org/Team:UNSW_Australia/Team"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/97/T--UNSW_Australia--Icon-people.png></a>
 +
  <p class="text-center big-text">Team</p>
 
</div>
 
</div>
<div id=modelling-icon class="circular-button">Modelling
 
 
</div>
 
</div>
</div>
+
<br/>
<div id=team-icon class="circular-button">Team
+
 
 +
<div height="350px" width="100%">
 
</div>
 
</div>
  
Line 83: Line 119:
 
   position: absolute;
 
   position: absolute;
 
   bottom: 20px;
 
   bottom: 20px;
 +
  padding-top: 20px;
 
}
 
}
  
Line 104: Line 141:
 
   100% {opacity: 1}
 
   100% {opacity: 1}
 
}
 
}
 +
  
 
.circular-button {
 
.circular-button {
Line 116: Line 154:
 
         margin: 0;
 
         margin: 0;
 
         width: 100%;
 
         width: 100%;
         height: 70vh;
+
         height: 80vh;
 
         padding-bottom: 30px;
 
         padding-bottom: 30px;
 
}
 
}
  
 
#background-image {
 
#background-image {
   height: 70vh;
+
   height: 80vh;
 +
}
 +
 
 +
.text-center {
 +
  text-align: center !important;
 
}
 
}
  
Line 157: Line 199:
 
   margin: 5px 10%;
 
   margin: 5px 10%;
 
   padding-bottom: 50px;
 
   padding-bottom: 50px;
  background-color: #f0f0f0;
 
 
}
 
}
  
Line 165: Line 206:
  
 
#gif-div {
 
#gif-div {
 +
  width: 100vw;
 
   background-color: #f0f0f0;
 
   background-color: #f0f0f0;
   width: 100vw;
+
   animation-name: fade-in;
 +
  animation-duration: 5s;
 
}
 
}
  
Line 190: Line 233:
  
 
#description-icon {
 
#description-icon {
     margin: 0 auto -40px auto !important;
+
     margin: 0 auto -80px auto !important;
 
}
 
}
  
 
#lab-icon {
 
#lab-icon {
     margin: auto 80px 15px 0 !important;
+
     margin: auto 100px 0 0 !important;
 
}
 
}
  
 
#hp-icon {
 
#hp-icon {
     margin: auto 0 15px 80px !important;
+
     margin: auto 0 0 100px !important;
 
}
 
}
  
 
#design-icon {
 
#design-icon {
     margin: 15px 80px auto 0 !important;
+
     margin: 0 100px auto 0 !important;
 
}
 
}
  
 
#modelling-icon {
 
#modelling-icon {
     margin: 15px 0 auto 80px !important;
+
     margin: 0 0 auto 100px !important;
 
}
 
}
  
 
#team-icon {
 
#team-icon {
     margin: -40px auto 0 auto !important;
+
     margin: -80px auto 0 auto !important;
 
}
 
}
  
 
#links {
 
#links {
   height: 600px;
+
   height: 850px;
 
}
 
}
  
 +
#links h2 {
 +
  font-size: 2.5rem;
 +
  padding-bottom: 30px;
 +
}
 +
 +
.link-icon {
 +
  height: 150px;
 +
  width: 150px;
 +
  cursor: pointer;
 +
  opacity: 0.7;
 +
  filter: grayscale(40%);
 +
}
 +
 +
.link-icon:hover {
 +
  opacity: 1;
 +
  filter: grayscale(0%);
 +
}
 +
 +
.big-text {
 +
  font-size: 1.3rem !important;
 +
}
 +
.red-link:link {
 +
    color: #9b3131;
 +
    background-color: transparent;
 +
    text-decoration: none;
 +
}
 +
 +
.red-link:visited {
 +
    color: #9b3131;
 +
    background-color: transparent;
 +
    text-decoration: none;
 +
}
 +
 +
.red-link:hover {
 +
    color: #c95d5d;
 +
    background-color: transparent;
 +
    text-decoration: underline;
 +
}
 
</style>
 
</style>
  

Latest revision as of 02:24, 18 October 2018

ASSEMBLASE

Covalently Co-localising Enzymes in a Modular System

Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects.

The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the Assemblase self-assembling scaffold system as the solution to this problem.

The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes.

Head over to our description page to find out how our system has been constructed.

Our Assemblase scaffold has a range of advantages that make it ideal for a variety of applications. This includes it being highly thermostable and chemically resistant permiting our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.

The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. 

Head over to our design page to find out how we chose the best components for our system.

Over the past few months we have been busy cloning DNA, expressing and purifying some really cool proteins, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.

We also got to perform some really awesome enzyme assays and FRET experiments, alongside modelling our enzyme kinetics with some mathematical magic.

On top of this, we executed molecular dynamics analysis, and grew our very own plants on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM!