Difference between revisions of "Team:NCHU Taichung/test"

Line 1: Line 1:
 
{{NCHU_Taichung}}
 
{{NCHU_Taichung}}
<html>
+
 
<head>
+
 
<script type="text/x-mathjax-config">
 
<script type="text/x-mathjax-config">
 
MathJax.Hub.Config({
 
MathJax.Hub.Config({
Line 8: Line 7:
 
</script>
 
</script>
 
<script async src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
<script async src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</head>
+
 
<body>
+
 
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
 
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
 
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
 
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</body>
 
</html>
 

Revision as of 14:34, 13 October 2018

<script type="text/x-mathjax-config"> MathJax.Hub.Config({

 tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}

}); </script> <script async src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">

When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$