Bec Schacht (Talk | contribs) |
Bec Schacht (Talk | contribs) |
||
Line 19: | Line 19: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | <style> | ||
+ | #experiments-header { | ||
+ | display: block; | ||
+ | } | ||
+ | #experiments-content { | ||
+ | margin: 0 10%; | ||
+ | } | ||
+ | #content { | ||
+ | padding-top: 235px; | ||
+ | } | ||
+ | </style> | ||
<div id=experiments-content> | <div id=experiments-content> | ||
+ | |||
<div id=cloning> | <div id=cloning> | ||
<h1>Cloning</h1> | <h1>Cloning</h1> | ||
Line 545: | Line 559: | ||
+ | </div> | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</html> | </html> |
Revision as of 04:07, 16 October 2018
Experiments
Cloning
Linearisation pETDuet1 and pRSFDuet1 plasmid backbones using PCR
- Forward and reverse primers created for the plasmids
- 2 uL of plasmid + 198 uL of water
Component | 50 µl Reaction | Final Concentration |
---|---|---|
Q5 High-Fidelity 2X Master Mix | 25 µl | 1X |
10 µM Forward Primer |
2.5 µl |
0.5 µM |
10 µM Reverse Primer |
2.5 µl |
0.5 µM |
Template DNA |
2 uL DILUTED |
< 1,000 ng |
Nuclease-Free Water |
18 uL |
|
STEP | TEMP | TIME |
Initial Denaturation |
98°C |
30 seconds |
25–35 Cycles |
98°C |
5–10 seconds |
62 |
10–30 seconds |
|
72°C |
2 min |
|
Final Extension |
72°C |
2 minutes |
Hold |
4–10°C |
Plasmid digest (Dpn1 digest)
- Set-up the reaction mixture:
Restriction Enzyme
1µl
DNA
1 µg
10X Cutsmart
5 µl (1X)
Total Reaction Volume
50 µl
- Incubate for 1 hr at 37C
- Heat inactivate at 80C for 20 minutes
Agarose gel electrophoresis
- Combine 100x agarose powder with 1x TAE buffer in a microwavable flask (eg. 1 g of agarose for 100 mL of TAE). The volume of agarose gel will depend on the size of gel you are making.
- Microwave for 1-2 min until the agarose is completely dissolved (do not overboil the solution). Stop and swirl the flask every 20 seconds and until the solution is as clear as water.
- Let agarose solution cool down to about 50 C (when you can comfortably hold the flask with your hand), then add 1 uL of RedSafe to the agarose solution.
- Seal the ends of a gel tray using masking tape. Pour the agarose into the gel tray with a well comb in place. Let the gel sit at room temperature for 20-30 mins until the gel solidifies.
- Place the gel into the gel box, fill the gel box with 1 x TAE buffer until the gel is covered then remove the well comb.
- Mix 2 uL of the digest sample with 3 uL of H2O and 1 uL of 6x loading dye.
- Load 5 uL of 1kb DNA ladder into the first lane of the gel. Load the remaining digest samples into the gel. Remember to include a negative control (non-digested plasmid).
- Connect the gel box to a power pack and run the gel at 100V for 1 hr. You should be able to see small bubbles rising in the buffer solution immediately after you turn the power pack on.
- Carefully take the gel tray to the spectrophotometer and analyse the DNA fragments with UV light. We expect to see a single clear band in digested samples, and a smear for the undigested plasmid at a higher position. Smear and a clear band indicates incomplete digestion.
Gibson Assembly
Materials:
- 5X Isothermal Reaction Mix (6 mL total)
- 3 mL 1 M Tris-Hcl (pH 7.5)
- 300 μL 1 M MgCl2
- 60 μL 100 mM dGTP
- 60 μL 100 mM dATP
- 60 μL 100 mM dTTP
- 60 μL 100 mM dCTP
- 300 μL 1 M DTT
- 1.5 g PEG-8000
- 300 μL 100 mM NAD
- 360 µL water
- Store at -20°C.
- 320 μL 5X Isothermal Master Mix
- 0.64 μL 10 U/μL T5 exonuclease
- 20 μL 2 U/μL Phusion DNA Pol
- 0.16 μL 40 U/μL T4 DNA Ligase
- 860 μL water
- Store in 15 µL aliquots at -20°C.
- PCR or digest your fragment of choice and gel purify
- If PCR from a methylated DNA template (e.g. propagated plasmid), a DpnI digest can be used to remove the unwanted plasmid. Clean up afterwards.
- Thaw a 15 μl assembly mixture aliquot and keep on ice until ready to be used.
- Add 5 μl of DNA to be assembled to the master mixture.
- The DNA fragments should be in equimolar amounts.
- Small fragments (<1 kb) must be added in a five times excess
- You can calculate the quantity of each fragment using their molecular weights.
- Alternatively, you can use the length of each fragment as a proxy for the molecular weight (assuming similar GC content in all fragments).
- Use 10-100 ng of each ~6 kb DNA fragment. For larger DNA segments, increasingly proportionate amounts of DNA should be added (e.g. 250 ng of each 150 kb DNA segment).
- Incubate at 50 °C for 15 to 60 min (60 min is optimal).
Heat shock transformation
- Incubate 50ng of plasmid construct with 25 µL of chemically competent E. coli T7
- Express cells or E. coli DH5α on ice for 30 minutes.
- Heat shock the cells for 45 seconds at 42C and placed back onto ice for 2 minutes.
- Allow cells to grow for 45 minutes in 200 µL of SOC outgrowth media (NEB) at 37°C and 200 rpm.
- Spread plate onto Luria broth (LB) agar plates containing 100 µg/mL of ampicillin and grown at 37°C overnight.
Colony PCR
- 18 uL Nuclease free water
- 5 uL 5x Taq master mix
- 0.5 uL 10 uM T7 promoter primer
- 0.5 uL 10 uM T7 terminator primer
- 95 C 5:00 mins
- 95 C 0:30 mins
- 55 C 0:30 mins
- 68 C 2:00 mins
- 68 C 5:00 mins
- 4 C 0:00 mins (hold)
Sequencing
- Transfer 10 uL of purified plasmid sample (50-100ng/uL) to an Eppendorf tube. Add 5 uL of one primer.
- Request sequencing. http://sequencing.ramaciotti.unsw.edu.au/index.html
- Label Eppendorf tubes with the order number, and 1, 2, 3, etc.
- Take Eppendorf tubes to the new Biosciences building Lvl 2 (at UNSW, Sydney, Australia), and store the samples in the fridge provided.
- Sanger sequencing is carried out following the provided protocol.
Restriction cloning
- Set-up the reaction
Restriction Enzyme
1µl of each enzyme
DNA
1 µg
10X Cutsmart
5 µl (1X)
Total Reaction Volume
50 µl
- Incubate for 1 hr at 37C
- Heat inactivate at 80C for 20 minutes
Ligation
Component | 20 μl Reaction |
---|---|
T4 DNA Ligase Buffer (10X)* |
|
Vector DNA |
50 ng |
Insert DNA |
A molar ratio of 1:3 vector to insert should be used |
Nuclease-free water |
to 20 μl |
T4 DNA Ligase |
1 μl |
Miniprep
- Protocols were followed from the Qiagen QIAprep Spin Miniprep Kit. No changes were made.
Protein Expression and Purification
Starter culture
- One colony was selected from the plate grown overnight and grown in 2 mL of LB containing 2 uL of the appropriate antibiotic at 37°C and 200 rpm and left overnight.
Large-scale grow-up
- Baffled shake flasks containing 500 mL of LB with 50uL of the appropriate antibiotic at 37°C are inoculated with the starter culture.
- The cells are grown at 37°C and 200 rpm and OD600 is periodically measured.
- Once OD600 reaches above 0.6, add IPTG of 1 mM concentration to induce the expression the proteins.
- After induction, grow the cells overnight at 24°C, 200 rpm.
Collection of cells by centrifugation
- Centrifuge the bacterial culture at 4600 x g for 20 minutes.
- Collect cell pellet and resuspended in binding buffer (20mm NaH2PO4, 500mM NaCl, 10mM Imidazole).
Cell lysis by sonication
- Lyse the cell pellet by sonication (Branson) for 10 minutes at 50% amplitude at alternating 2 second intervals, kept on ice.
- Centrifuge the cell lysate at 15000 rpm for 45 minutes.
- Collect the supernatant (soluble fraction).
IMAC
(Immobilised metal ion affinity chromatography (IMAC) was performed to purify the expressed proteins.)
- His-tagged protein is bound to a 1 mL Ni-NTA Superflow Cartridge (Qiagen) by loading the soluble fraction of the cell lysate onto the column.
- Wash with 10 mL of binding buffer (20mm NaH2PO4, 500mM NaCl, 10mM Imidazole).
- Elute with 2 mL of elution buffer (same as binding, but with 500 mM imidazole).
- Collect fractions with SDS-PAGE.
Buffer exchange
Column
- Elutions were analysed with SDS-PAGE and buffer exchanged into PBS pH 8 using Pierce Protein Concentrators PES, 10K MWCO, 2-6 mL (Thermo Scientific).
- Add protein to the column
- Top up column with PBS buffer
- Centrifuge column at 4600 x g for 20 minutes.
- Repeatedly centrifuge, discard flow through, and top up with PBS buffer (pH 8) until dilution factor of 0.1 is reached. That is, there is 1% of the old buffer left in the solution.
Dialysis
- Add 1mL of protein and 1mL of PBS buffer (PH 8) to a 15mL Falcon tube.
- Add 2mL of the solution to a SnakeSkin™ Dialysis Tubing, 10K MWCO, 22 mm.
- Use dialysis tubing clamps (one-piece polypropylene clamp) to further secure the solution inside the snakeskin dialysis tubing.
- Add 500mL of PBS buffer, pH 8, (this is the buffer we want to exchange into) into a 500ml glass beaker.
- Place the dialysis tubing with the solution into the beaker.
- Place the beaker on top of a magnetic stirrer, 75 rpm, and leave overnight.
Western Blot
Materials
- NuPAGE Bis-Tris gel
- NuPAGE MES running buffer
- Mini iBlotTM stack
- TBS-T:
- 1x TBS with 0.1% Tween20
- Blocking Solution:
- 5% skim milk in TBS-T
- Antibody Solution:
- 1:2000 dilution of HRP conjugated anti-His-tag antibody in TBS-T + 1% BSA
- Chemiluminescent HRP substrate
Sample Preparation
- Add reducing buffer to the bacterial lysates
- Heat at 95 degrees for 5 minutes
SDA-Page Gel
- Remove the NuPAGE gel from its packaging and peel off the plastic strip from its base
- Place the gel inside the tank, and fill with NuPAGE MES running buffer
- Load 5uL of the protein standards ladder into the first well
- Load up to 20uL of each lysate sample into the wells
- Connect the gel tank to a power pack, and run at 160V for 40min
Protein Transfer
- Remove and rinse the gel in water
- Inside an iBlotTM Transfer Device, assemble the mini stack with the gel inside
- Run at 20V for 7min
Blocking
- Incubate the membrane for 1-2hrs in blocking solution at room temperature, shaking
Antibody Staining
- Incubate the membrane in antibody solution either at 4 degrees overnight, or at room temperature for 2 hours
- Wash the membrane in TBS-T three times for 10mins per wash at room temperature, shaking
Detection
- Remove membrane from the last wash and place in chemiluminescent image analyser
- Prepare HRP substrate according to manufacturer's instructions and add to the membrane
- Image