Line 15: | Line 15: | ||
<div class="column full_size"> | <div class="column full_size"> | ||
<p> | <p> | ||
− | Metabolic engineering and synthetic biology in general are powerful areas of research, but they can only realize a | + | Metabolic engineering and synthetic biology in general are powerful areas of research, but they can only realize a leap in breakthroughs when computational models involved in the Design-Build-Test-Learn engineering paradigm are standardized and implemented in the field. As part of our iGEM project, the models developed were motivated by different objectives and approaches in order to inform and be shaped by our endeavors in the lab. To do so, two different computational models were used to determine the best approaches to improve PHA yield and productivity in recombinant <em>E. coli</em>. |
</p> | </p> | ||
<p id="dynamic"> | <p id="dynamic"> | ||
− | One of the ways to model a system <em>in silico</em> is through the <a href="Model#dynamic">dynamic model</a>, | + | One of the ways to model a system <em>in silico</em> is through the <a href="Model#dynamic">dynamic model</a>, a favourite among systems biologists. By defining a pathway (such as the heterologous PHA biosynthetic pathway) or metabolic network as a series of ordinary differential equations (ODE), dynamic behaviors in the system over time may be predicted. A considerable limitation arises from the need for highly detailed information to parameterize the kinetics of the pathway; therefore, this type of model may be difficult to implement. |
</p> | </p> | ||
<p> | <p> | ||
− | On the other hand, an organism as well-studied as <em>E. coli</em> enjoys a vast wealth of literature surrounding its genome and metabolic network. As a result, stoichiometric or <a href="Model#cobra">constraint-based models</a> such as genome-scale models (GEM) are available to be used for <em>in silico</em> simulations without necessitating the rigorous characterization associated with dynamic or kinetic models. Using this, we can investigate problems such as the best conditions to grow a recombinant SBM <em>E. coli</em> and how to improve the titer of PHA. | + | On the other hand, an organism as well-studied as <em>E. coli</em> enjoys a vast wealth of literature surrounding its genome and metabolic network. As a result, stoichiometric or <a href="Model#cobra">constraint-based models</a> such as genome-scale models (GEM) are available to be used for <em>in silico</em> simulations without necessitating the rigorous characterization associated with dynamic or kinetic models. Using this, we can investigate problems such as the best conditions to grow a recombinant recombinant Sleeping beauty mutase (SBM) operon-containing <em>E. coli</em> and how to improve the titer of PHA. |
</p> | </p> | ||
Line 83: | Line 83: | ||
</p> | </p> | ||
<p> | <p> | ||
− | + | Among the main observations from the model results were that the resulting predicted molar ratios may be inaccurate and significantly discordant from the actual physiologically relevant amounts of PHBV found in microorganisms. Even in the case where 500 μM propionate and 1000 μM acetate was fed into the system, the occurrent molar ratio of PHV was as high as approximately 40%. This, however, was to be expected given the limited scope of the dynamic model. We decided to test other parameter alterations to see whether relative changes in behavior may be reflected concordantly with experimental data. | |
</p> | </p> | ||
Revision as of 14:16, 17 October 2018