Difference between revisions of "Team:SDU-CHINA/Description"

(Prototype team page)
 
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{SDU-CHINA}}
 
 
<html>
 
<html>
 +
<head>
 +
<meta charset="utf-8" />
 +
    <link rel="stylesheet" href="https://2018.igem.org/Team:SDU-CHINA/bootstrap337?action=raw&ctype=text/css">
 +
  <script src="https://2018.igem.org/Team:SDU-China/jquery211?action=raw&ctype=text/javascript"></script>
 +
  <script src="https://2018.igem.org/Team:SDU-China/bootjs?action=raw&ctype=text/javascript"></script>
 +
    <link rel="stylesheet" type="text/css" href="font-awesome-4.7.0/css/font-awesome.min.css">
 +
    <style>
 +
    #contentSub, #footer-box, #catlinks, #search-controls, #p-logo,
 +
    #sideMenu, #menubar, .logo_2018, .printfooter, .firstHeading,.visualClear {
 +
        display: none;
 +
    }
  
 +
    #top-section { 
 +
        border: 0 none;
 +
        height: 14px;
 +
        z-index: 100;
 +
        top: 0;
 +
        position: fixed;
 +
        width: 975px;
 +
        left: 50%;
 +
        margin-left: -487px;
 +
    }
  
 +
    #globalWrapper, #content {
 +
        width: 100%;
 +
        height: 100%;
 +
        border: 0px;
 +
        background-color: transparent;
 +
        margin: 0px;
 +
        padding: 0px;
 +
    }
  
<div class="column full_size">
+
    html, body, .wrapper {
<h1>Description</h1>
+
        width: 100%;
 +
        height: 100%;
 +
        background-color: transparent;
 +
    }
 +
li { list-style: none; }
 +
a { text-decoration: none; }
 +
#menu a:link, a:visited, a:active { color: white;  }
 +
#menu a:hover { color: #c1d9ff; }
  
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
+
table { margin: 0 auto; }
 +
td { text-align: center }
  
</div>
+
#content{
 +
    margin-top: -34px;
 +
    padding: 0px;
 +
    background-color: white;
 +
        width: 100%;
 +
        height: 100%;
 +
        border: 0px;
 +
}
  
  
 +
#header, #footer {
 +
background: linear-gradient(to right, #005AB5, #007500);
 +
background: -webkit-linear-gradient(to right, #005AB5, #007500);
 +
background: -moz-linear-gradient(to right, #005AB5, #007500);
 +
background: -o-linear-gradient(to right, #005AB5, #007500);
 +
float: left;
 +
width: 100%;
 +
padding: 23px 0%;
 +
        margin: 0 0px !important;
 +
}
  
<div class="column two_thirds_size">
+
#logo {
<h3>What should this page contain?</h3>
+
float: left;
<ul>
+
position: relative;
<li> A clear and concise description of your project.</li>
+
margin-left:1%;
<li>A detailed explanation of why your team chose to work on this particular project.</li>
+
display: block !important;
<li>References and sources to document your research.</li>
+
}
<li>Use illustrations and other visual resources to explain your project.</li>
+
#logo img {  width:150px; margin-top:5px;} /*???*/
</ul>
+
</div>
+
  
<div class="column third_size" >
+
#menu a { text-decoration: none; }
<div class="highlight decoration_A_full">
+
#menu a:link, a:visited, a:active { color: white; }
<h3>Inspiration</h3>
+
#menu a:hover { color: #c1d9ff; }
<p>See how other teams have described and presented their projects: </p>
+
  
<ul>
+
#contact a { text-decoration: none; }
<li><a href="https://2016.igem.org/Team:Imperial_College/Description">2016 Imperial College</a></li>
+
#contact a:link, a:visited, a:active { color: white; }
<li><a href="https://2016.igem.org/Team:Wageningen_UR/Description">2016 Wageningen UR</a></li>
+
#contact a:hover { color: #c1d9ff; }
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> 2014 UC Davis</a></li>
+
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">2014 SYSU Software</a></li>
+
</ul>
+
</div>
+
</div>
+
  
 +
#menu {
 +
    float: right;
 +
    position: relative;
 +
    transform: translateY(-10%);
 +
    margin-right: 1%;
 +
    display: block !important;
 +
}
 +
#menu li {
 +
    float: left;
 +
    position: relative;
 +
    padding:2% 0%;
 +
   
 +
}
 +
#menu li a { font: 18px sans-serif;  font-weight: bolder;  padding: 15px; }
 +
#menu ul li ul {
 +
    background-color: #336666;
 +
    opacity: 0.8    ;
 +
    display: none;
 +
    position: absolute;
 +
    margin: 0;
 +
    padding: 10% 0;
 +
    font-weight: lighter !important;
 +
}
 +
#menu ul li ul li { font-size: 10px;  padding: 5%; }
 +
#menu li:hover ul, .menu li.over ul { display: block; }
  
  
  
<div class="column two_thirds_size" >
 
<h3>Advice on writing your Project Description</h3>
 
  
<p>
+
#sponsors {
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be concise, accurate, and unambiguous in your achievements.
+
text-align: center;
</p>
+
float: left;
 +
margin-left: 15px;
 +
margin-top: 2px;
 +
}
 +
#address {
 +
text-align: center;
 +
float: right;
 +
margin-right: 20px;
 +
margin-left: 30px;
 +
margin-top: 2px;
 +
}
 +
#contact {
 +
text-align: center;
 +
float: right;
 +
position: relative;
 +
margin-right: 30px;
 +
margin-top: 2px;
 +
}
  
</div>
 
  
<div class="column third_size">
 
<h3>References</h3>
 
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
 
  
 +
#section {clear: both;
 +
width:100%;
 +
margin-top:-20px;
 +
padding: 133px auto 0 auto;
 +
overflow: hidden;
 +
background-color:white !important;}
 +
 +
#main-title {
 +
font-size: 45px;
 +
color: #4b5ea4;
 +
font-family: sans-serif;
 +
text-align: center;
 +
font-weight: lighter;
 +
margin: 0;
 +
padding: 30px 0px 0px 0px;
 +
margin: 0px 67px 0px 65px;
 +
}
 +
.sublinks { text-align: center; }
 +
.sublinks h2 {
 +
display: inline-block;
 +
margin: 20px 40px;
 +
}
 +
.sublinks a:link, .sublinks a:visited, .sublinks a:active, .p-top a:link, .p-top a:visited, .p-top a:active { color: #8298ec;  font-family: sans-serif;  font-weight: lighter; }
 +
.sub-title {
 +
font-family: sans-serif;
 +
color: white;
 +
text-align: center;
 +
}
 +
.conteudo {
 +
    width:100%;
 +
    max-width: 1800px;
 +
    background-color: white;
 +
    line-height: 1.5;
 +
    clear: both;
 +
 +
margin-top:-22px;
 +
}
 +
.p-top {
 +
color: #4b5ea4;
 +
text-align: center;
 +
margin-top: 5px;
 +
font: 25px sans-serif;
 +
transform: translateY(80%);
 +
}
 +
 +
.panel-default > .panel-heading {
 +
    color: #333;
 +
    border-color: #ddd;
 +
}
 +
 +
 +
p {
 +
    text-align: justify;
 +
    text-justify: inter-word;
 +
    font-family: 'Calibri', sans-serif;
 +
}
 +
p {
 +
    font-family: 'Open Sans', sans-serif;
 +
    font-weight: 400 !important;
 +
    font-size: 18px !important;
 +
    line-height: 1.5;
 +
    margin-bottom: 20px;
 +
}
 +
h4 {
 +
    font-family: 'Josefin Sans', sans-serif !important;
 +
    font-size: 30px !important;
 +
}
 +
.some-padding {
 +
    padding-top: 20px;
 +
}
 +
 +
h4{
 +
display: inline-block;
 +
display:-webkit-inline-block; /* Safari, Chrome, and Opera */
 +
    display: -moz-inline-block;/* Firefox */
 +
    display: -o-inline-block;
 +
}
 +
 +
@media screen and (max-width: 600px) {
 +
         
 +
      }
 +
 +
#header{
 +
width: 100%;
 +
    height:95px;  /* header的高度一定要是固定值*/
 +
    position:fixed;
 +
    top:0px;
 +
    left:0px;
 +
clear:both;
 +
z-index: 3;
 +
}
 +
#footer{
 +
    width: 100%;
 +
    height:100px;  /* footer的高度一定要是固定值*/
 +
    position:absolute;
 +
    bottom:0px;
 +
    left:0px;
 +
    color: white;
 +
}
 +
.body{
 +
  clear:both;
 +
  overflow: hidden;
 +
  padding-bottom: 180px;
 +
  padding-top: 95px;
 +
  /*保证footer是相对于container位置绝对定位*/
 +
    position:relative; 
 +
    width:100%;
 +
    min-height:100%;
 +
    /*设置padding-bottom值大于等于footer的height值,以保证main的内容能够全部显示出来而不被footer遮盖;*/ 
 +
    box-sizing: border-box;
 +
-moz-box-sizing:border-box; /* Firefox */
 +
-webkit-box-sizing:border-box; /* Safari */
 +
}
 +
 +
.paragraphs{
 +
  padding: 0 150px 0 150px; 
 +
  font-family: sans-serif;
 +
  text-align: center;
 +
}
 +
.paragraphs img{
 +
  position: relative;
 +
  display: inline-block;
 +
  margin: 10px 10px;
 +
}
 +
 +
.paragraphs a:visited { color:#5a3428;text-decoration: none;}
 +
.paragraphs a:hover { color:#80ddbf;text-decoration: none;}
 +
 +
</style>
 +
 +
 +
<div>
 +
</head>
 +
<body>
 +
 +
<div class="body">
 +
  <div id="header">
 +
  <!--LOGO LINK--->
 +
  <div id="logo"><a href="https://2018.igem.org/Team:SDU-CHINA"><img src="https://static.igem.org/mediawiki/2018/7/72/T--SDU-China--duihui.jpg" alt="LOGO" /></a></div>
 +
  <div id="menu">
 +
    <ul>
 +
            <li>
 +
                <a href="#">PROJECT &#9662;</a>
 +
                <ul>
 +
                    <!--links-->
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Description">Description</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Design">Design</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Results">Results</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Demonstrate">Demonstrate</a></li>
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <a href="#">WETLAB &#9662;</a>
 +
                <ul>
 +
                    <!--links-->
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Experiments">Protocols</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Notebook">Notebook</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Safety">Safety</a></li>
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <a href="#">DRYLAB &#9662;</a>
 +
                <ul>
 +
                    <!--links-->
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Model">Model</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Hardware">Hardware</a></li>
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <a href="#">TEAM &#9662;</a>
 +
                <ul>
 +
                    <!--links-->
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Team">Members</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Attributions">Attributoins</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Collaborations">Collaborations</a></li>
 +
                </ul>
 +
            </li>
 +
            <!--links-->
 +
            <li><a href="https://2018.igem.org/Team:SDU-CHINA/InterLab">INTERLAB</a></li>
 +
            <li><a href="#">PARTS &#9662;</a>
 +
            <ul>
 +
                    <!--links-->
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Parts">Parts</a></li>
 +
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Improve">Improve</a></li>
 +
                   
 +
                </ul>
 +
                </li>
 +
            <li><a href="https://2018.igem.org/Team:SDU-CHINA/Human_Practices">HUMAN PRACTICES &#9662;</a>
 +
            <ul>
 +
                    <!--links-->
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Human_Practices#Silver">Silver</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Human_Practices#integrated">Gold & Integrated</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SDU-CHINA/Public_Engagement">Engagement</a></li>
 +
                </ul>
 +
                </li>
 +
        </ul>
 +
  </div>
 
</div>
 
</div>
  
  
  
 +
<div class="conteudo">
 +
<div class="paragraphs">
  
 +
<h1 id="main-title">Description</h1>
  
 +
<p>As one of the foundations of sustainable development, metabolic engineering rebuilds and optimizes metabolic network as well as regulatory pathways within cells to enhance production of native metabolites or to endow cells with the ability to produce new products.  These products include fuels, chemicals, foods, feeds, and pharmaceuticals<sup>[1,2]</sup>. In order to improve the titer and yield of the target product, both the over-expression of genes responsible for target compound production <sup>[3,4,5]</sup> and the deletion of genes responsible for by-product synthesis <sup>[6,7,8,9]</sup> are required.</p>
  
 +
<img src="https://static.igem.org/mediawiki/2018/3/35/T--SDU-CHINA--description.jpg"  height="350"><br>
 +
 +
<br>
 +
 +
<p>However, some of these deleted genes are responsible for the synthesis of intermediates of important metabolic pathways. The deletion of these genes can influence bacterial growth and cell maintenance. Deletion of these genes would increase the titer and yield of the desired product per cell but decrease the growth rate and final cell density, perhaps resulting in cell death. After all, the final cell density is important for the total titer and yield during fermentation.</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2018/f/fa/T--SDU-China--TRAIN_GROW.gif"  height="250"><br>
 +
 +
<p>An alternative approach is to keep the expression of these genes high until an adequate cell mass is achieved, then turn these genes off. For example, instead of permanently knocking out a gene from the chromosome, a novel gene expression control system could conditionally inhibit the expression of a specific gene<sup>[10]</sup>.</p>
 +
 +
<p>A common choice is using commercially available induction systems, for instance, based on L-arabinose and isopropyl-b-D- thiogalactoside (IPTG) for the expression of enzymatic pathways. The use of artificial chemical inducers like L-arabinose and IPTG, although effective, less favourable because of the high cost of inducers, toxicity of inducer, and incompatibilities with industrial scale-up<sup>[11]</sup>. Recently,  biological chemical inducer systems have been applied in metabolic engineering, mainly including two types: intermediate metabolite-induced system and quorum sensing (QS) system. In former, the special biosensor (e.g., the activator) detects the corresponding class of intermediate metabolites like NADPH/NADP<sup>+</sup><sup>[12]</sup>, and then promotes the expression of genes downstream. Different with the former, what the latter detects are the quorum sensing molecules like N-acyl homoserine lactones (AHL)<sup>[13]</sup>. However, intermediate metabolite-induced systems have poor generality and selectivity, and QS systems are difficult to regulate.</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2018/3/3a/T--SDU-China--TRAIN_production.gif"  height="250"><br>
 +
 +
<p>In recent years, with the development of optogenetics in synthetic biology, precisely, a variety of light sensors provide a powerful piece of kit that can control cellular processes spatially and temporally<sup>[14-18]</sup>. On the one hand, as the inducer, light is not only cheaper and no-toxic, but also regulates the gene expression rapidly. On the other hand, using light as the inducer can avoid tedious genetic manipulation because conditions such as light duration, light intensity can be optimized from outside. Moreover, light has the other properties such as invertibility, spatial and temporal precision, and it can be the interface between electricity and organisms. Thus, light can be an ideal tool, which properties matches with metabolic pathways regulation<sup>[19]</sup>. We intend to take advantage of light as exogenous signal controlling the metabolic flux to balance the growth and production phase.</p>
 +
 +
<br>
 +
 +
<p>With rapid development of industry, petrochemical plastics have spread worldwide due to their low cost, with ease of manufacture, versatility, and imperviousness to water<sup>[20]</sup>. Plastic bags, plastic bottles, Plastic greenhouses, etc. have become part of our daily life. And so much convenience plastic products bring to our life, which we can’t imagine the life without them.</p>
 +
 +
<p>However, it seems that every coin has two sides. Petrochemical plastics are so hard to be degraded that they can neither be diluted by pouring into the ocean nor be completely degraded in years by being buried underground. And as more and more plastic products are produced, the total amount of plastic waste increases in a terrible rate within years. It seems that the only way to solve the plastic pollution nowadays, is burning them, which however, will release toxic chemicals and do harm to ourselves, probably causing nausea, headaches, damages in the nervous system, etc<sup>[21]</sup>. Hence, it’s our emergency to develop another convenient and low-cost material to replace the traditional plastics.</p>
 +
 +
<p>Polyhydroxybutyrate (PHB) is one of the promising bio-materials as a replacement, which can be naturally synthesized by a wide range of microorganisms as an intracellular carbon source. In addition, products made of PHB possess the outstanding physical properties similar to traditional plastics. It is accessible and more importantly bio-degradable. Even through it is thrown into the environment by mistake, it can still be degraded within years causing no pollution. Besides, PHB is also a renewable resource as it can be produced by microorganisms sustainably. Thus, for its broad market prospects, we would like to use PHB production as an example of our growth-production switching system, hoping that we can improve the production rate of PHB to reduce the cost.</p>
 +
 +
 +
<h4 id="main-title">References</h4>
 +
<p>[1] Keasling, Jay D. "Manufacturing Molecules Through Metabolic Engineering." Science 330.6009(2010):1355-1358.<br>
 +
[2] Rabinovitchdeere, C. A., et al. "Synthetic biology and metabolic engineering approaches to produce biofuels. " Chemical Reviews 113.7(2013):4611-4632.<br>
 +
[3] Wang, C. W., M. K. Oh, and J. C. Liao. "Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. " Biotechnology & Bioengineering 62.2(2015):235-241.<br>
 +
[4] Lee, Kwang Ho, et al. "Systems metabolic engineering of Escherichia coli for L‐threonine production." Molecular systems biology 3.1 (2007): 149.<br>
 +
[5] Lütke-Eversloh, Tina, and Gregory Stephanopoulos. "Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression." Metabolic engineering 10.2 (2008): 69-77.<br>
 +
[6] Clomburg, J. M, and R. Gonzalez. "Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. " Biotechnology & Bioengineering 108.4(2015):867-879.<br>
 +
[7] Qian, Z. G., X. X. Xia, and S. Y. Lee. "Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine." Biotechnology & Bioengineering 104.4(2010):651-662.<br>
 +
[8] Atsumi, S, et al. "Metabolic engineering of Escherichia coli for 1-butanol production. " Metabolic Engineering 10.6(2007):305-311.<br>
 +
[9] Balzer, Grant J., et al. "Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase." Metabolic engineering 20 (2013): 1-8.<br>
 +
[10] Soma, Y, et al. "Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch." Metabolic Engineering 23.5(2014):175-184.<br>
 +
[11] Lo, T. M., et al. "A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production." Cell Systems 3.2(2016):133-143.<br>
 +
[12] Zhang, J., et al. "Engineering an NADPH/NADP+ redox biosensor in yeast." Acs Synthetic Biology 5.12(2016):1546.<br>
 +
[13] Galloway, W. R., et al. "Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways." Chemical Reviews 111.1(2011):28.
 +
[14] Baumschlager, A, S. K. Aoki, and M. Khammash. "Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control." Acs Synthetic Biology 6.11(2017).<br>
 +
[15] Han, Tiyun, C. Quan, and H. Liu. "Engineered photoactivatable genetic switches based on the bacterium phage T7 RNA polymerase." Acs Synthetic Biology 6.2(2016).<br>
 +
[16] Levskaya, A, et al. "Synthetic biology: engineering Escherichia coli to see light. " Nature 438.7067(2005):441-442.<br>
 +
[17] Tabor, Jeffrey J., A. Levskaya, and C. A. Voigt. "Multichromatic Control of Gene Expression in Escherichia coli." Journal of Molecular Biology 405.2(2011):315-324.<br>
 +
[18] Fernandez-Rodriguez, J, et al. "Engineering RGB color vision into Escherichia coli." Nature Chemical Biology 13.7(2017):706-708.<br>
 +
[19] Zhao, E. M., et al. "Optogenetic regulation of engineered cellular metabolism for microbial chemical production. " Nature 555.7698(2018).<br>
 +
[20] Wikipedia contributors. (2018, October 14). Plastic. In Wikipedia, The Free Encyclopedia. Retrieved 18:31, October 17, 2018, from https://en.wikipedia.org/w/index.php?title=Plastic&oldid=864042427<br>
 +
[21] Guest Bloggers.(July 15, 2014).But can’t you just burn plastic? plastic-free tuesday.<br>
 +
</p>
 +
 +
 +
</div>
 +
</div>
 +
 +
 +
 +
 +
<div id="footer">
 +
    <div id="sponsors">
 +
        <img src="https://static.igem.org/mediawiki/2018/a/ab/T--SDU-CHINA--Sponsors0.svg" alt="SPONSORS" usemap="#Map-Sponsors" />
 +
        <map name="Map-Sponsors" class="Map-Sponsors">
 +
            <area title="SDU" href="http://www.lifesci.sdu.edu.cn/" shape="rect" coords="0,0,247,60" />
 +
            <area title="MATHWOAR" href="https://www.mathworks.com/" shape="rect" coords="247,0,440,60" />
 +
            <area title="KLAB" href="http://www.mbtech.sdu.edu.cn/" shape="rect" coords="440,0,715,60" />
 +
        </map>
 +
    </div>
 +
    <div id="contact">
 +
        <div><a href="mailto:sdubioigem@163.com">mailto:sdubioigem@163.com</a></div>
 +
        <div><a href="https://www.instagram.com/sdubiochina_2018/">www.instagram.com/sdubiochina_2018/</a></div>
 +
    </div>
 +
</div>
 +
</div>
 +
</body>
 
</html>
 
</html>

Latest revision as of 02:44, 18 October 2018

Description

As one of the foundations of sustainable development, metabolic engineering rebuilds and optimizes metabolic network as well as regulatory pathways within cells to enhance production of native metabolites or to endow cells with the ability to produce new products. These products include fuels, chemicals, foods, feeds, and pharmaceuticals[1,2]. In order to improve the titer and yield of the target product, both the over-expression of genes responsible for target compound production [3,4,5] and the deletion of genes responsible for by-product synthesis [6,7,8,9] are required.



However, some of these deleted genes are responsible for the synthesis of intermediates of important metabolic pathways. The deletion of these genes can influence bacterial growth and cell maintenance. Deletion of these genes would increase the titer and yield of the desired product per cell but decrease the growth rate and final cell density, perhaps resulting in cell death. After all, the final cell density is important for the total titer and yield during fermentation.


An alternative approach is to keep the expression of these genes high until an adequate cell mass is achieved, then turn these genes off. For example, instead of permanently knocking out a gene from the chromosome, a novel gene expression control system could conditionally inhibit the expression of a specific gene[10].

A common choice is using commercially available induction systems, for instance, based on L-arabinose and isopropyl-b-D- thiogalactoside (IPTG) for the expression of enzymatic pathways. The use of artificial chemical inducers like L-arabinose and IPTG, although effective, less favourable because of the high cost of inducers, toxicity of inducer, and incompatibilities with industrial scale-up[11]. Recently, biological chemical inducer systems have been applied in metabolic engineering, mainly including two types: intermediate metabolite-induced system and quorum sensing (QS) system. In former, the special biosensor (e.g., the activator) detects the corresponding class of intermediate metabolites like NADPH/NADP+[12], and then promotes the expression of genes downstream. Different with the former, what the latter detects are the quorum sensing molecules like N-acyl homoserine lactones (AHL)[13]. However, intermediate metabolite-induced systems have poor generality and selectivity, and QS systems are difficult to regulate.


In recent years, with the development of optogenetics in synthetic biology, precisely, a variety of light sensors provide a powerful piece of kit that can control cellular processes spatially and temporally[14-18]. On the one hand, as the inducer, light is not only cheaper and no-toxic, but also regulates the gene expression rapidly. On the other hand, using light as the inducer can avoid tedious genetic manipulation because conditions such as light duration, light intensity can be optimized from outside. Moreover, light has the other properties such as invertibility, spatial and temporal precision, and it can be the interface between electricity and organisms. Thus, light can be an ideal tool, which properties matches with metabolic pathways regulation[19]. We intend to take advantage of light as exogenous signal controlling the metabolic flux to balance the growth and production phase.


With rapid development of industry, petrochemical plastics have spread worldwide due to their low cost, with ease of manufacture, versatility, and imperviousness to water[20]. Plastic bags, plastic bottles, Plastic greenhouses, etc. have become part of our daily life. And so much convenience plastic products bring to our life, which we can’t imagine the life without them.

However, it seems that every coin has two sides. Petrochemical plastics are so hard to be degraded that they can neither be diluted by pouring into the ocean nor be completely degraded in years by being buried underground. And as more and more plastic products are produced, the total amount of plastic waste increases in a terrible rate within years. It seems that the only way to solve the plastic pollution nowadays, is burning them, which however, will release toxic chemicals and do harm to ourselves, probably causing nausea, headaches, damages in the nervous system, etc[21]. Hence, it’s our emergency to develop another convenient and low-cost material to replace the traditional plastics.

Polyhydroxybutyrate (PHB) is one of the promising bio-materials as a replacement, which can be naturally synthesized by a wide range of microorganisms as an intracellular carbon source. In addition, products made of PHB possess the outstanding physical properties similar to traditional plastics. It is accessible and more importantly bio-degradable. Even through it is thrown into the environment by mistake, it can still be degraded within years causing no pollution. Besides, PHB is also a renewable resource as it can be produced by microorganisms sustainably. Thus, for its broad market prospects, we would like to use PHB production as an example of our growth-production switching system, hoping that we can improve the production rate of PHB to reduce the cost.

References

[1] Keasling, Jay D. "Manufacturing Molecules Through Metabolic Engineering." Science 330.6009(2010):1355-1358.
[2] Rabinovitchdeere, C. A., et al. "Synthetic biology and metabolic engineering approaches to produce biofuels. " Chemical Reviews 113.7(2013):4611-4632.
[3] Wang, C. W., M. K. Oh, and J. C. Liao. "Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. " Biotechnology & Bioengineering 62.2(2015):235-241.
[4] Lee, Kwang Ho, et al. "Systems metabolic engineering of Escherichia coli for L‐threonine production." Molecular systems biology 3.1 (2007): 149.
[5] Lütke-Eversloh, Tina, and Gregory Stephanopoulos. "Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression." Metabolic engineering 10.2 (2008): 69-77.
[6] Clomburg, J. M, and R. Gonzalez. "Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. " Biotechnology & Bioengineering 108.4(2015):867-879.
[7] Qian, Z. G., X. X. Xia, and S. Y. Lee. "Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine." Biotechnology & Bioengineering 104.4(2010):651-662.
[8] Atsumi, S, et al. "Metabolic engineering of Escherichia coli for 1-butanol production. " Metabolic Engineering 10.6(2007):305-311.
[9] Balzer, Grant J., et al. "Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase." Metabolic engineering 20 (2013): 1-8.
[10] Soma, Y, et al. "Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch." Metabolic Engineering 23.5(2014):175-184.
[11] Lo, T. M., et al. "A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production." Cell Systems 3.2(2016):133-143.
[12] Zhang, J., et al. "Engineering an NADPH/NADP+ redox biosensor in yeast." Acs Synthetic Biology 5.12(2016):1546.
[13] Galloway, W. R., et al. "Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways." Chemical Reviews 111.1(2011):28. [14] Baumschlager, A, S. K. Aoki, and M. Khammash. "Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control." Acs Synthetic Biology 6.11(2017).
[15] Han, Tiyun, C. Quan, and H. Liu. "Engineered photoactivatable genetic switches based on the bacterium phage T7 RNA polymerase." Acs Synthetic Biology 6.2(2016).
[16] Levskaya, A, et al. "Synthetic biology: engineering Escherichia coli to see light. " Nature 438.7067(2005):441-442.
[17] Tabor, Jeffrey J., A. Levskaya, and C. A. Voigt. "Multichromatic Control of Gene Expression in Escherichia coli." Journal of Molecular Biology 405.2(2011):315-324.
[18] Fernandez-Rodriguez, J, et al. "Engineering RGB color vision into Escherichia coli." Nature Chemical Biology 13.7(2017):706-708.
[19] Zhao, E. M., et al. "Optogenetic regulation of engineered cellular metabolism for microbial chemical production. " Nature 555.7698(2018).
[20] Wikipedia contributors. (2018, October 14). Plastic. In Wikipedia, The Free Encyclopedia. Retrieved 18:31, October 17, 2018, from https://en.wikipedia.org/w/index.php?title=Plastic&oldid=864042427
[21] Guest Bloggers.(July 15, 2014).But can’t you just burn plastic? plastic-free tuesday.