B A C K G R O U N D
Cholera Background
Cholera is an acute diarrheal illness caused by an infection of the intestines with the toxigenic bacterium Vibrio cholerae serogroup O1 or O139. V. cholerae O139, first identified in Bangladesh in 1992, has caused numerous outbreaks in the past but recently has only been identified in sporadic cases across Asia. The main form of transmission of the Cholera bacterium is the contamination of water and food by feces from an infected individual. Cholera is prevalent in locations with inadequate water treatment and sanitation infrastructure. The main form of diagnosis for Cholera is a stool sample or rectal swab, which must be sent to a laboratory in order to identify the Cholera bacterium. The key symptom of Cholera is severe diarrhea, which leads to dehydration, pain in the abdominal regions, and lethargy. Approximately one in ten (10%) infected persons will have dire cases of Cholera characterized by watery diarrhea, profuse vomiting, and leg cramps. In these cases, body fluid loss and water-electrolyte imbalance lead to dehydration and shock. Very often, lack of access to treatment can lead to death in a matter of hours. The CDC reports that there are an estimated 2.9 million Cholera cases worldwide.
Unfortunately, even with the existence of Oral Cholera Vaccines (OCVs), an effective tool to combat cholera in developing nations with an 80.2% effectiveness rate, 100,000 Cholera deaths still occur yearly. Other treatments include rehydration therapy, antibiotics, and IV fluids. In the years 2000-2016, the World Health Organization discovered numerous major Cholera epidemics, including Haiti in the Americas, DRC, Somalia and the United Republic of Tanzania in Africa, and Yemen in Asia. These same locations are reported to have poor water infrastructure and lack of access to Cholera treatment centers. As of April 27, 2017, there have been 1,055,788 suspected cases, 612,703 confirmed cases, and 2, 255 deaths from Cholera-related problems. Ultimately, resource allocation has been difficult because Cholera is rapid and sporadic, hindering aid organizations from providing timely solutions.
Unfortunately, even with the existence of Oral Cholera Vaccines (OCVs), an effective tool to combat cholera in developing nations with an 80.2% effectiveness rate, 100,000 Cholera deaths still occur yearly. Other treatments include rehydration therapy, antibiotics, and IV fluids. In the years 2000-2016, the World Health Organization discovered numerous major Cholera epidemics, including Haiti in the Americas, DRC, Somalia and the United Republic of Tanzania in Africa, and Yemen in Asia. These same locations are reported to have poor water infrastructure and lack of access to Cholera treatment centers. As of April 27, 2017, there have been 1,055,788 suspected cases, 612,703 confirmed cases, and 2, 255 deaths from Cholera-related problems. Ultimately, resource allocation has been difficult because Cholera is rapid and sporadic, hindering aid organizations from providing timely solutions.
Timeline
Picture of the distribution of Cholera outbreaks through time and within various geographies as well as the new advancements to effectively reduce Cholera outbreaks worldwide.
References
[1] Drinking-water. (2018, February 7). Retrieved from http://www.who.int/news-room/fact- sheets/detail/drinking-water
[2] (n.d.). Retrieved from http://www.who.int/water_sanitation_health/takingcharge.html
[3] Berman, J. (2009, October 29). WHO: Waterborne Disease is World's Leading Killer. Retrieved from https://www.voanews.com/a/a-13-2005-03-17-voa34-67381152/274768.html
[4] Learn How to Use the Crystal VC Dipstick Test to Detect Vibrio Cholera in Our New Video | DOVE: Stop Cholera. (n.d.). Retrieved from https://www.stopcholera.org/blog/learn-how-use-crystal-vc-dipstick-test-detect-vibrio-cholera-our-new-video
[5] Cholera - Vibrio cholerae infection. (2018, May 14). Retrieved from https://www.cdc.gov/cholera/diagnosis.html
[6] The Burden of Soil-transmitted Helminths (STH). (2011, June 06). Retrieved from https://www.cdc.gov/globalhealth/ntd/diseases/sth_burden.html
[7] Water. (2016, April 22). Retrieved from https://www.cdc.gov/parasites/water.html
[8] Collender, P. A., Kirby, A. E., Addiss, D. G., Freeman, M. C., & Remais, J. V. (2015, December). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679500/
[9] Action Against Worms. (2008, February). Retrieved from http://www.who.int/neglected_diseases/preventive_chemotherapy/pctnewsletter11.pdf
[10] Pilotte, N., Papaiakovou, M., Grant, J. R., Bierwert, L. A., Llewellyn, S., McCarthy, J. S., & Williams, S. A. (n.d.). Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design. Retrieved from http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004578
[11]- Detection of Cholera Toxin [PDF]. (n.d.). Atlanta: Centers for Disease Control and Prevention. https://www.cdc.gov/cholera/pdf/laboratory-methods-for-the-diagnosis-of-vibrio-cholerae-chapter-7.pdf
[2] (n.d.). Retrieved from http://www.who.int/water_sanitation_health/takingcharge.html
[3] Berman, J. (2009, October 29). WHO: Waterborne Disease is World's Leading Killer. Retrieved from https://www.voanews.com/a/a-13-2005-03-17-voa34-67381152/274768.html
[4] Learn How to Use the Crystal VC Dipstick Test to Detect Vibrio Cholera in Our New Video | DOVE: Stop Cholera. (n.d.). Retrieved from https://www.stopcholera.org/blog/learn-how-use-crystal-vc-dipstick-test-detect-vibrio-cholera-our-new-video
[5] Cholera - Vibrio cholerae infection. (2018, May 14). Retrieved from https://www.cdc.gov/cholera/diagnosis.html
[6] The Burden of Soil-transmitted Helminths (STH). (2011, June 06). Retrieved from https://www.cdc.gov/globalhealth/ntd/diseases/sth_burden.html
[7] Water. (2016, April 22). Retrieved from https://www.cdc.gov/parasites/water.html
[8] Collender, P. A., Kirby, A. E., Addiss, D. G., Freeman, M. C., & Remais, J. V. (2015, December). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679500/
[9] Action Against Worms. (2008, February). Retrieved from http://www.who.int/neglected_diseases/preventive_chemotherapy/pctnewsletter11.pdf
[10] Pilotte, N., Papaiakovou, M., Grant, J. R., Bierwert, L. A., Llewellyn, S., McCarthy, J. S., & Williams, S. A. (n.d.). Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design. Retrieved from http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004578
[11]- Detection of Cholera Toxin [PDF]. (n.d.). Atlanta: Centers for Disease Control and Prevention. https://www.cdc.gov/cholera/pdf/laboratory-methods-for-the-diagnosis-of-vibrio-cholerae-chapter-7.pdf