Difference between revisions of "Team:Valencia UPV/Design"

Line 126: Line 126:
 
             </div>
 
             </div>
 
         </div>
 
         </div>
        <div class="col-md-9 col9Attr" style="padding-left: 6em;padding-right: 2em;">
+
            <div>
+
<h3 style="
              <a class="anchorOffset" id="lmExperiments"></a>
+
    color: #353535;
              <h2 class="h2Experiments">Experiments</h2>
+
    font-weight: 700;
          <p>
+
    font-size: 40px;
During the development of Printeria project we have performed different kinds of experiments for different pourposess. First we performed experiments related with the functioning of Printeria itself. (EXPLAIN MORE). Other kind of experiments we performed are the ones necesary to <b>characterize</b> the different parts designed by Printeria.
+
    margin-bottom: 0.2em;
        The experiments we feromed for Printeria can be divided in these 3 classes:
+
">Biological Design: The Golden Braid Assembly</h3>
</p>
+
<ul>
+
<li><p>
+
<b>Printeria experiments</b> based on differential equations that describe the biochemical processes of a cell. With them, we can simulate the different genetic circuits that Printeria allows us to build.
+
</p></li>
+
<li><p>
+
<b>Characterizing the parts of our <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection" target="_blank">Part Collection</a></b> from the optimization results and provide the user with all the information about the Printeria kit.
+
</p></li>
+
        <li><p>
+
          <b>Spectral measurements</b> to match simulation results to experimental data obtained from Printeria constructions.
+
        </p></li>
+
</ul>
+
              <!--BOTONES PARA MOVERSE POR LA PÁGINA -->
+
              <!--Los enlaces están bien pero los ids a donde apuntan están descuadrados adrede para que al pulsar lleve un poco por encima del contenido -->
+
              <div id="" data-scroll-id="" tabindex="-1" style="outline: none;margin-top: 1em;margin-bottom: 1em;justify-content: center;" class="row">
+
                  <div class="col-md-3" style="text-align: center;margin-right: 2em;">
+
                    <a class="inner-link" href="#imPrinteria"><img class="fotosModeling" src="https://static.igem.org/mediawiki/2018/c/ca/T--Valencia_UPV--instagramUPV2018.png"></a>
+
                    <p style="text-align: center !important; font-weight: bold;">Printeria experiments</p>
+
                  </div>
+
                  <div class="col-md-3" style="text-align: center;margin-right: 2em;">
+
                    <a class="inner-link" href="#imCharact"><img class="fotosModeling" src="https://static.igem.org/mediawiki/2018/c/ca/T--Valencia_UPV--instagramUPV2018.png"></a>
+
                    <p style="text-align: center !important; font-weight: bold;">Parts characterization </p>
+
                  </div>
+
                  <div class="col-md-3" style="text-align: center;margin-right: 2em;">
+
                    <a class="inner-link" href="#imSpectral"><img class="fotosModeling" src="https://static.igem.org/mediawiki/2018/c/ca/T--Valencia_UPV--instagramUPV2018.png"></a>
+
                    <p style="text-align: center !important; font-weight: bold;">Spectral measurements</p>
+
                  </div>
+
              </div>
+
              <!--FIN BOTONES PARA MOVERSE POR LA PÁGINA -->
+
  
 +
<p>We are continuously talking about a machine which can create its <b>own genetic circuits</b>, by using pre-designed parts, and ‘print’ them inside different living cell chassis. But how is Printeria going to perform all these complex reactions?</p>
  
              <div>
+
<p>One of the first attempts to standardize a restriction enzyme-based DNA assembly method was BioBricks (1). However, its pairwise nature can make the construction of multipart systems, such as transcriptional units, time-consuming.</p>
              <a class="anchorOffset" id="imPrinteria"></a>
+
<p>Printeria is using a state-of-the-art technology based on the Golden Gate Assembly, the <b>Golden Braid Assembly Method</b>. This technology uses <b>type IIs restriction enzymes</b> in order to cut all the parts and build these genetic circuits.</p>
                  <h3>Printeria experiments</h3>
+
<p><b>The Golden Gate assembly is based on type IIs enzymes. But what does this really mean? </b></p>
 +
<p>Type IIs restriction enzymes are a group of endonucleases that recognize <b>asymmetric double stranded DNA </b>sequences and <b>cleave outside</b> of their recognition sequence. Thus, digestion leaves short <b>single stranded overhangs</b> with non-specific sequences. </p>
 +
<p>This allows us to design the cleaving region so that we are creating a sticky end that will be pasted with the following part, and so on. This is the way in which <b>directionality</b> is maintained and parts are pasted in the desired order.</p>
 +
<p><b>But why is this assembly technique so crucial for our machine to work?</b></p>
  
 +
<ul>
 +
  <li>
 +
    <p>Carefully positioning the recognition and cleavage sites, in opposite directions, for the entry and destination vectors leads into a <b>final plasmid</b> - once the DNA construction has been ligated -where there is <b>no recognition site</b>. So, once the insert has been ligated, it cannot be cut again. This allows simultaneous digestion and ligation in <b>a one-pot reaction</b> so that the whole assembly is taking place in a single step. This fact makes the Golden Braid Technology perfect for our machine to work, as the whole reaction should take place in a single droplet.</p>
 +
  </li>
 +
  <li>
 +
    <p><b>High efficiency</b>. By means of modifying the different parameters we can end up with an almost 100% efficiency.</p>
 +
  </li>
 +
  <li>
 +
    <p><b>Robust reaction</b>. The moving of the droplet across the PCB surface should not be a real problem for it to work.</p>
 +
  </li>
 +
    <li>
 +
    <p>The ability of cutting and pasting several parts by using the same enzymes makes the whole <b>assembly easier to perform</b>.</p>
 +
  </li>
 +
      <li>
 +
    <p><b>No scars</b> are left when assembling the different parts.</p>
 +
  </li>
 +
</ul>
  
 +
<h4>The Golden Braid Assembly</h4>
 +
<p>In the GB assembly method the transcriptional units can be combined in <b>binary steps</b> to grow <b>multigene structures</b> (several TUs within the same destination plasmid). To do so, this system relies on the switching between two levels of plasmids, <b>α and Ω</b> , with different antibiotic resistance.
  
                  <a class="anchorOffset" id="imCharact"></a>
+
<p>This Technology can mainly be divided into three different complexity levels:</p>
                  <h3>Parts characterization</h3>
+
<h4>Level 0 Assembly</h4>
 
+
<p>This is the easiest Golden Braid reaction. It implies the removal of internal restriction sites for the enzymes used in GB (<b>BsaI, BsmBI</b>) and the addition of appropriate 4-nt flanking overhangs to convert a single basic part (promoter, RBS, CDS or terminator) into a standard part inside a predesigned vector (<b>domestication to the GB grammar</b>). </p>
                    <a class="anchorOffset" id="exp_protocol"></a>
+
<p>We are using this level 0 assembly in the lab, so that we domesticate every single part which Printeria will use to create its own transcriptional units. </p>
                    <h4>Experimental protocol</h4>
+
<p>The goal is to end up with a series of plasmids that contain each of the different promoters, RBSs, CDSs and terminators.</p>
                    <p>
+
<p>In our specific case, sticky ends of the parts are predesigned so that when cleaving our domestication vector pUD2 with BsmBI, they are pasted in a proper way.</p>
                    The Printeria Modeling and Lab team and have jointly designed an experimentation protocol for the laboratory experiments. Thanks to it, and from the colonies of the different UT the experimental data can be obtained, processed and ready to be optimized.
+
<p>This <b>pUD2</b> plasmid has a<b> chloramphenicol resistance</b> and the <b>lacZ cassette</b> so that blue-white screening can be performed among the transformed E. coli cells.</p>
                    </p>
+
<p>This can be thought as <b>Printeria’s PAST</b>.</p>
                    <p><i>Materials:</i></p>
+
<img src="https://static.igem.org/mediawiki/2018/d/d6/T--Valencia_UPV--im5UPV2018.png" alt="">
<ul>
+
<h6>Figure 1: P10500 domestication vector. Yellow and black puzzle-like pieces represent the restriction sites for BsmbI. It has chloramphenicol resistance.</h6>
<li><a href=""></a>
+
<img src="https://static.igem.org/mediawiki/2018/f/fc/T--Valencia_UPV--im6UPV2018.png" alt="">
<p>Printeria transcriptional units</b> (see our Printeria <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection" target="_blank">Part Collection</a>)</p>
+
<h6>Figure 2:  Designing of the different basic parts. The upper sequence corresponds with the strand that was ordered for synthesis. The lower sequence represents the complementary strand. BsmbI restriction sites are represented by the yellow and black cuts. The coloured sequences represent BsaI restriction sites when the part is inserted in our domestication vector. A 6-nucleotide scar was added to the RBS so that the ribosome could bind. </h6>
</li>
+
<div class="fotoConPie">
<li>
+
  <div class="row" style="margin: 0;">
<p>Measuring equipment: <b>Biotek Cytation3</b></p>
+
    <div class="col-md-6" style="padding: 0;padding-right: 0.3em;">
</li>
+
      <img src="https://static.igem.org/mediawiki/2018/b/b2/T--Valencia_UPV--im7UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
<li>
+
    </div>
<p><b>96 well plate</b></p>
+
    <div class="col-md-6" style="padding: 0;padding-left: 0.3em;">
</li>
+
      <img src="https://static.igem.org/mediawiki/2018/f/f5/T--Valencia_UPV--im8UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
</ul>
+
    </div>
<p><i>Protocol:</i></p>
+
    <div class="pieDeImagen">
<ol>
+
      <h6>
<li><p>
+
        Figure 3: BsmbI digested part and vector.
A colony or a Glycerol stock corresponding to a TU assembled by our Lab team is used to inoculate LB culture medium (with the appropriate antibiotic, in the cases of the TU, with Kanamycin) and grow overnight at 37ºC and 250 r.p.m.
+
      </h6>
</p></li>
+
    </div>
            <li><p>
+
  </div>
              A 10:1 dilution of the culture is performed changing the culture media to M9 minimal medium and grow for 4 hours at 37ºC and 250 r.p.m.
+
</div>
            </p></li>
+
<img src="https://static.igem.org/mediawiki/2018/2/28/T--Valencia_UPV--im9UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
            <li><p>
+
<h6>Figure 4: Domestication of a promoter inside the P10500 </h6>
              The culture is chilled in an ice-water bath anfd  the optical density at 600nm (OD<sub>600</sub>) of the culture is measured with a spectrophotometer. Then a calculation is performed (using this Excel sheet) to make a dilution in order to bring the OD<sub>600</sub> of the culture to 0.1OD<sub>600</sub> with the appropriate culture volume to inoculate 8 replicas into 200uL wells.
+
<img src="https://static.igem.org/mediawiki/2018/7/7f/T--Valencia_UPV--im10UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">  
            </p></li>
+
<h6>Figure 5: Basic domesticated part. Light yellow and grey sequences represent the BsmbI sticky ends which have been glued. As the new plasmid is assembled, BsaI restriction sites appear (blue and pink cuts). </h6>
<li><p>
+
<img src="https://static.igem.org/mediawiki/2018/1/1e/T--Valencia_UPV--im11UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">  
The experiment is designed on the measuring equipment. In our case, we use the Biotek Cytation3 equipment. We establish the equipment parameters.
+
<h6>Figure 6: All Golden Braid compatible domesticated parts. BsaI restriction sites appear. They are represented by the coloured puzzle-like pieces. </h6>
<table style="width:100%">
+
<h4>Level 1 Assembly</h4>
  <tr>
+
<p>This second level of complexity cannot be performed without having fulfilled the domestication of the parts. Once it is done, we can now create a <b>simple transcriptional unit</b>. This is what Printeria can assemble nowadays.</p>  
    <th><p>Parameters</p></th>
+
<p>As said before, each of these domesticated parts now has a BsaI recognition site and a cleaving site which, when cleaved, will match with the contiguous parts. In other words, promoters will stick with the left end of our destination vector, <b>pGreen alpha1 (kanr)</b>, using their left sticky end and with RBSs using their right end. At the same time CDSs will stick to these RBSs using their left sticky end, and to the terminators with their right end. Finally, the terminators will stick to the right end of our backbone destination vector so that, we will end up having a <b>plasmid with a single TU inside it</b>.</p>
    <th><p>Description</p></th>
+
<p>This is <b>the PRESENT</b>.</p>
  </tr>
+
<img src="https://static.igem.org/mediawiki/2018/d/d9/T--Valencia_UPV--im12UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
  <tr>
+
<h6>Figure 7: pGreen alpha 1 destination vector. The BsmbI restriction site will allow us to create a level 2 assembly.</h6>
    <td><p>Time</p></td>
+
<div class="fotoConPie">
    <td><p><b>06:00:00 (HH:MM:SS)</b> usually. <b>Measurement interval: 05:00 (MM:SS)</b></p></td>
+
  <div class="row" style="margin: 0;">
  </tr>
+
    <div class="col-md-6" style="padding: 0;padding-right: 0.3em;">
  <tr>
+
      <img src="https://static.igem.org/mediawiki/2018/0/0e/T--Valencia_UPV--im13UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
    <td><p>Number of samples</p></td>
+
    </div>
    <td><p>We normally set <b>8 samples of reporter protein for each TU colony</b></p></td>
+
    <div class="col-md-6" style="padding: 0;padding-left: 0.3em;">
  </tr>
+
      <img src="https://static.igem.org/mediawiki/2018/1/16/T--Valencia_UPV--im14UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
  <tr>
+
    </div>
    <td><p>Number of medium samples</p></td>
+
    <div class="pieDeImagen">
    <td><p>We normally set <b>8 samples of medium</b>. We normally use <b>LB or M9 medium with Kanamycin</b></p></td>
+
      <h6>
  </tr>
+
        Figure 8: BsaI digested destination and domesticated part to build a transcriptional unit.
  <tr>
+
      </h6>
    <td><p>Temperature</p></td>
+
    </div>
    <td><p>37 ºC</p></td>
+
  </div>
  </tr>
+
</div>
  <tr>
+
<img src="https://static.igem.org/mediawiki/2018/9/93/T--Valencia_UPV--im15UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">  
    <td><p>Shake</p></td>
+
<h6>Figure 9: Transcriptional unit assembly</h6>
    <td><p>Double Orbital. Continuously. We shake the plate before each measure</p></td>  
+
<img src="https://static.igem.org/mediawiki/2018/0/0d/T--Valencia_UPV--im16UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">  
  </tr>
+
<h6>Figure 10: TU insertion inside pGreen alpha1</h6>
    <tr>
+
<img src="https://static.igem.org/mediawiki/2018/f/fd/T--Valencia_UPV--im17UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">  
    <td><p>Absorbance. Optical Density (OD) measure</p></td>
+
<h6>Figure 11: Light coloured sequences represent the BsaI sticky ends which have been glued. As the new plasmid is assembled, BsmbI restriction sites appear (blue and dark blue) for a level 2 assembly.</h6>
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>
+
<h4>Level 2 Assembly</h4>
  </tr>
+
<p>This is the last level of complexity in which, by using a combination of <b>α and Ω vectors</b>, we can <b>cut and paste several transcriptional units inside the same plasmid </b> so that more <b>complex genetic circuits</b> can be created. </p>
  <tr>
+
<p>Printeria aims to arrive to this level of complexity someday so that its possibilities and <b>combinations are infinite</b>.</p>
    <td><p>Excitacion wavelength</p></td>
+
<p>This will be <b>Printeria’s FUTURE</b>.</p>
    <td><p>We normally set <b>485 nm</b></p></td>
+
<h4>References</h4>
  </tr>
+
<ol>
  <tr>
+
  <li>
    <td><p>Emission wavelength</p></td>
+
    <p>Shetty RP, Endy D, Knight TF. Engineering BioBrick vectors from BioBrick parts. J Biol Eng. 2008;2: 5.</p>
    <td><p>We normally set <b>528 nm</b></p></td>
+
  </li>
  </tr>
+
  <li>
  <tr>
+
    <p>Andreou AI, Nakayama N (2018) Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly. PLOS ONE 13(1): e0189892.
    <td><p>Gain (G)</p></td>
+
</p>
    <td><p>Normally the gain value is <b>G = 60</b>, although for proteins with lower fluorescence, it is recommended that G takes higher values.</p></td>  
+
  </li>
  </tr>
+
  <li>
</table>
+
    <p>Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, et al. (2011) GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLOS ONE 6(7): e21622.
</p></li>
+
</p>
<li><p>
+
  </li>
Samples are introduced into the 96 well plate and the experiment begins.
+
  <li>
</p></li>
+
    <p>Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, et al. Golden- Braid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. Plant Physiol. 2013; 162: 1618–1631</p>
<li><p>
+
  </li>
After the experiment, fluorescence and absorbance data obtained are exported to an Excel file.
+
</ol>
</p></li>
+
<li><p>
+
We run the MATLAB <a href="https://static.igem.org/mediawiki/2018/1/13/T--Valencia_UPV--convert_dataUPV2018.txt" target="_blank">convert_data.m</a> script. This script uses several additional MATLAB files with which:
+
<ol style="list-style-type: lower-latin;">
+
<li><p>
+
We extract the fluorescence and absorbance matrices from the Excel file (see <a href="https://static.igem.org/mediawiki/2018/e/e4/T--Valencia_UPV--readExperiment3UPV2018.txt" target="_blank">readExperiment3.m</a> MATLAB function).
+
</p></li>
+
<li><p>
+
We apply the <a href="#esquema_ops" class="inner-link">corrections</a> to the data (see <a href="https://static.igem.org/mediawiki/2018/3/32/T--Valencia_UPV--plotExperiment_ybUPV2018.txt" target="_blank">plotExperiment_yb.m</a> MATLAB function).
+
</p></li>
+
<li><p>
+
We save the data of FOD, OD, molecules and time in a <b>.mat format</b> file.
+
</p></li>
+
</ol>
+
</p></li>
+
</ol>
+
 
+
 
+
                   
+
 
+
                <a class="anchorOffset" id="RBS_exp"></a>
+
                <h7><b>Experiments changing RBS</b></h7>
+
                <p>
+
                We have designed <b>two experiments</b> following the same <a href="#exp_protocol" class="inner-link">experimental protocol</a>. In them we have assembled different Printeria TU with the same promoters, CDS (<a href="http://parts.igem.org/Part:BBa_K2656013" target="_blank">sfGFP</a> reporter protein) and transcriptional terminator, but with <b>different RBS</b>. These experiments were used in our modeling to complete the characterization of the part in the Printeria Collection.
+
                </p>
+
                <a class="anchorOffset" id="RBS_list"></a>
+
                <p><b>Printeria RBS</b>:</p>
+
                <ul>
+
                <li><p>
+
                <b>Strong expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656009" target="_blank" style="padding-right: 0">BBa_K2656009</a>.
+
                </p></li>
+
                <li><p>
+
                <b>Medium expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656011" target="_blank" style="padding-right: 0">BBa_K2656011</a>.
+
                </p></li>
+
                <li><p>
+
                <b>Low expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656010" target="_blank" style="padding-right: 0">BBa_K2656010</a>.
+
                </p></li>
+
                <li><p>
+
                <b>Very low expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656008" target="_blank" style="padding-right: 0">BBa_K2656008</a>, <a href="http://parts.igem.org/Part:BBa_K2656012" target="_blank" style="padding-right: 0">BBa_K2656012</a>.
+
                </p></li>
+
                </ul>
+
 
+
+
<img src="https://static.igem.org/mediawiki/2018/b/b1/T--Valencia_UPV--optimization_exp1_RBS_graphUPV2018.png">
+
<img src="https://static.igem.org/mediawiki/2018/b/b1/T--Valencia_UPV--optimization_exp1_RBS_graphUPV2018.png">
+
<img src="https://static.igem.org/mediawiki/2018/b/b1/T--Valencia_UPV--optimization_exp1_RBS_graphUPV2018.png">
+
+
+
 
+
<a class="anchorOffset" id="prom_exp"></a>
+
                <h7><b>Experiments changing promoters</b></h7>
+
                <p>
+
                We have designed <b>two experiments</b> following the same <a href="#exp_protocol" class="inner-link">experimental protocol</a>. In them we have assembled different Printeria TU with the same RBS, CDS (<a href="http://parts.igem.org/Part:BBa_K2656022" target="_blank">GFP</a> reporter protein) and transcriptional terminator, and with <b>different promoters</b>. After obtaining the results, and following the <a href="#optimization" class="inner-link">optimization protocol</a>, we have obtained the parameters of the model and have validated our model.
+
                </p>
+
                <a class="anchorOffset" id="promoter_list"></a>
+
                <p><b>Printeria promoters</b>:</p>
+
                <ul>
+
                <li><p>
+
                <b>Strong promoters</b>: <a href="http://parts.igem.org/Part:BBa_K2656005" target="_blank" style="padding-right: 0">BBa_K2656005</a>
+
                </p></li>
+
                <li><p>
+
                <b>Medium promoters</b>: <a href="http://parts.igem.org/Part:BBa_K2656007" target="_blank" style="padding-right: 0">BBa_K2656007</a>
+
                </p></li>
+
                <li><p>
+
                <b>Low promoters</b>: <a href="http://parts.igem.org/Part:BBa_K2656004" target="_blank" style="padding-right: 0">BBa_K2656004</a>
+
                </p></li>
+
                </ul>
+
+
 
+
 
+
 
+
+
 
+
                  <a class="anchorOffset" id="imSpectral"></a> 
+
                  <h3>Spectral measurements</h3>
+
                   
+
                    <p>
+
This year, Valencia UPV iGEM team has designed an extensive <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection" target="_blank">Part Collection</a> in purpose of allowing the user to design multiple genetic constructions and experiments. One of our main objectives has been to <b>show the user clear and structured information</b> about the pieces that make up the Printeria kit. For this reason, we have considered the characterization of the parts as a priority when developing the project. In this way, we have elaborated some <b>procedures</b> which have allowed us to systematically obtain and structure information from the parts. 
+
<ul>
+
<li><p>
+
<a href="#spectra" class="inner-link">Procedure for obtaining protein spectra</a>
+
</p></li>
+
<li><p>
+
<a href="#comparison" class="inner-link">Comparison between sfGFP and GFP relative fluorescence intensity</a>
+
</p></li>
+
</ul>                     
+
</p>
+
 
+
<a id="spectra" class="anchorOffset"></a>
+
<h4>Procedure for obtaining protein spectra </h4>
+
+
<p>
+
Obtaining <b>excitation and emission spectra</b> is a fundamental aspect in the process of characterization of a fluorescent protein. <b>Each protein has a characteristic spectrum</b>, which indicates the energy in which the molecule is excited or emits at a certain wavelength.
+
</p>
+
<p>
+
The characterization of the reporter proteins by excitation and emission spectra are of great importance in experimentation. When contrasting experimental information with the theoretical results of mathematical models, we experiment with numerous reporter proteins, such as fluorescence proteins or chromoproteins. However, the <b>fluorescence data obtained must be corrected applying diferent operations</b> in order to obtain representative fluorescence data:
+
</p>
+
<ol style="list-style-type: upper-roman;">
+
<li><p>
+
The subtraction of the medium fluorescence:
+
<img src="https://static.igem.org/mediawiki/2018/9/97/T--Valencia_UPV--fsubsUPV2018.png">
+
</li></p>
+
<li><p>
+
The quotient of the fluorescence with the gain:
+
<img src="https://static.igem.org/mediawiki/2018/b/b0/T--Valencia_UPV--fgainUPV2018.png">
+
</li></p>
+
<li><p>
+
The quotient of the fluorescence with excitation and emission efficiency:
+
<img src="https://static.igem.org/mediawiki/2018/2/21/T--Valencia_UPV--fcorrUPV2018.png">
+
</li></p>
+
</ol>
+
<a id="esquema_ops" class="anchorOffset"></a>
+
<img src="https://static.igem.org/mediawiki/2018/6/6e/T--Valencia_UPV--esquema_opsUPV2018.png">
+
<p>
+
Until now, the corrections applied to the experiments performed with these reporter proteins were the subtraction of the fluorescence of the medium, and the division by the gain factor of the measuring equipment. However, <b>with the protein spectra we can also normalize the fluorescence data to values that would have been obtained with maximum excitation and emission</b>.
+
</p>
+
<p>
+
Owing to this reason, <b>a protocol has been established</b> in the lab by Lab and Modeling team <b>to obtain the spectrum of any reporter protein</b>.
+
</p>
+
<p><i>Materials:</i></p>
+
<ul>
+
<li>
+
<p>Measuring equipment: <b>Biotek Cytation3</b></p>
+
</li>
+
<li>
+
<p><b>96 well plate</b></p>
+
</li>
+
<li>
+
<p><b>MATLAB 2018a software</b></p>
+
</li>
+
</ul>
+
<p><i>Procedure:</i></p>
+
<ol>
+
<li><p>
+
We look for the <a href="https://www.thermofisher.com/es/es/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html" target="_blank" style="padding-right: 0">theoretical spectra</a> of the protein to be measured or similar molecules in order to determine the wavelength at which the protein is excited or emitted at maximum energy, i.e. where the theoretical spectral peaks occurs.
+
</p></li>
+
<li><p>
+
We define the protocol of our equipment to get the absorbance and fluorescence dataset. In our protocol, the most important parameters to be established are summarized in the following Table.
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Description</p></th>  
+
  </tr>
+
  <tr>
+
    <td><p>Number of samples</p></td>
+
    <td><p>From <b>3 to 6 samples of reporter protein</b> and <b>3 samples of medium (LB or M9 medium)</b></p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Temperature</p></td>
+
    <td><p>37 ºC</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Shake</p></td>
+
    <td><p>Double Orbital. 01:00 (MM:SS)</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Absorbance. Optical Density (OD)</p></td>
+
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Excitacion and emission scans</p></td>
+
    <td><p>The scans occur between <b>two wavelength limit values</b>. The established range will depend on the theoretical spectrum of the protein.</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Excitacion and emission wavelengths</p></td>
+
    <td><p>These values will depend on the range, and therefore on the spectrum. Values far from the theoretical peak lead to more attenuated fluorescence curves, and values very close to the peak can lead to overlap and error in reading the data. Therefore, <b>a compromise must be reached between curve resolution and reading overlap</b>.</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Gain (G)</p></td>
+
    <td><p>Normally the gain value is <b>G = 60</b>, although for proteins with lower fluorescence, it is recommended that G takes higher values.</p></td>  
+
  </tr>
+
</table>
+
</p></li>
+
 
+
<li><p>
+
The experiment is introduced, and the experimental absorbance data and the fluorescence curves of the samples are obtained with the medium fluorescence correction applied.
+
</p></li>
+
 
+
<li><p>
+
The dataset is exported to an Excel file.
+
</p></li>
+
 
+
<li><p>
+
The MATLAB script <a href="https://static.igem.org/mediawiki/2018/f/f7/T--Valencia_UPV--spectrummUPV2018.txt" target="_blank">spectrum.m</a> for fluorescent proteins is executed:
+
<ol style="list-style-type: lower-latin;">
+
<li>
+
<p>Dataset is extracted from the Excel file. We discard readings that have suffered overlap, or that take negative values.</p>
+
</li>
+
<li>
+
<p>The fluorescence curves of all samples are averaged, and the result is normalised (from 0 to 100%).</p>
+
</li>
+
<li>
+
<p>Graphs of the normalized absorption and emission spectra are plotted. The X-axis represents the wavelength (nm), and the Y-axis represents the normalized fluorescence intensity (%).</p>
+
</li>
+
</ol>
+
</p></li>
+
 
+
</ol>
+
<img src="https://static.igem.org/mediawiki/2018/e/e8/T--Valencia_UPV--sfGFP_spectrumUPV2018.png">
+
 
+
<p>
+
In practical terms, the protocol has been applied to all of our reporter proteins: <a href="http://parts.igem.org/Part:BBa_K2656022" target="_blank">GFP</a>, <a href="http://parts.igem.org/Part:BBa_K2656013" target="_blank">sfGFP</a>, <a href="http://parts.igem.org/Part:BBa_K2656021" target="_blank">YFP</a> and <a href="http://parts.igem.org/Part:BBa_K2656014" target="_blank">mRFP</a>. All results can be found in our parts collection as well as in the <a href="http://parts.igem.org/Catalog" target="_blank">iGEM catalog</a>.
+
</p>
+
<p>
+
In the particular case of a reporter chromoprotein, such as <a href="http://parts.igem.org/Part:BBa_K2656018" target="_blank">amilCP</a>, we do not measure fluorescence, but absorbance. In this case, in rder to obtain the corrected absorbance curve, we must subtract from the cell absorbance data with the reporter protein the absorbance of a medium with cells without chromoprotein. Once the data have been corrected, we normalize them between values of 0 and 100 and with this we elaborate the graph. The protocol used can be found in the MATLAB script <a href="https://static.igem.org/mediawiki/2018/8/8b/T--Valencia_UPV--amilCP_spectrumUPV2018.txt" target="_blank">amilCP_spectrum.m</a>.
+
</p>
+
<p>
+
Finally, we have also obtained the spectra of the fluorescein molecule. These spectra have been used to correct the fluorescence data used in the <a href="" target="_blank">Interlab Study</a> to obtain the Relative Fluorescence Units (RFU) to Molecules of Equivalent Fluorochrome (MEFL) conversion factor. In addition, the <a href="#comparison" class="inner-link">comparison</a> between GFP and sfGFP proteins RFU has been possible thanks to fluorescein spectra.
+
+
</p>
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Value</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>Number of samples</p></td>
+
    <td><p>6 samples. 3 samples of medium (LB or M9 medium)</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Temperature</p></td>
+
    <td><p>37 ºC</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Shake</p></td>
+
    <td><p>Double Orbital. 01:00 (MM:SS)</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Absorbance. Optical Density (OD)</p></td>
+
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Emission range</p></td>
+
    <td><p>[495 - 580] nm</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Fixed excitation wavelength</p></td>
+
    <td><p>480 nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Excitation range</p></td>
+
    <td><p>[430 - 520] nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Fixed emission wavelength</p></td>
+
    <td><p>545 nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Gain (G)</p></td>
+
    <td><p>60</p></td>
+
  </tr>
+
</table>
+
<img src="https://static.igem.org/mediawiki/2018/1/11/T--Valencia_UPV--fluorescein_spectrumUPV2018.png">
+
 
+
<a id="comparison" class="anchorOffset"></a>
+
<h4>Comparison between sfGFP and GFP relative fluorescence intensity</h4>
+
+
<p>
+
<b>One of the main problems</b> we encounter when processing the results of experiments <b>in Synthetic Biology are the units of measurement of fluorescence data</b>. Unlike absorbance, where there is a simple conversion between Optical Density (OD) and cell number, <b>there is no direct relationship between the Relative Units of Fluorescence (RFU) and the number of protein molecules in the cell</b>. Moreover, RFUs vary among reporter fluoroproteins: for example, an RFU of the GFP protein does not have to be equivalent to an RFU of the mRFP protein, sfGFP, etc.  
+
</p>
+
<p>
+
Thanks to initiatives such as the <a href="" target="_blank">Interlab Study</a>, we have been able to go a step further and obtain a <b>MEFL/cell<sub>GFP</sub> factor</b> of equivalence between the RFU of the <a href="http://parts.igem.org/Part:BBa_K2656022" target="_blank">GFP</a> protein and the Molecules of Equivalent Fluorochrome (MEFL). This relationship is an important breakthrough, as it can give us a more <b>accurate estimation</b> of the amount of GFP molecules in the cell.
+
</p>
+
<p>
+
However, <b>another reporter protein widely used in the experiments is the <a href="http://parts.igem.org/Part:BBa_K2656013" target="_blank">sfGFP</a></b>. This protein has a much faster folding than GFP, which translates into a <b>higher fluorescence intensity per molecule</b>. In order to obtain the MEFL/cell<sub>sfGFP</sub> factor from sfGFP, the Printeria Modeling and Lab teams have designed a <b>comparative experiment between both proteins</b>. The experiment consists of designing <b>two identical transcriptional units (TU), changing only the CDS sequence</b> so that each TU will produce GFP and sfGFP, respectively. It should be added that this experiment is based on <b>two fundamental assumptions</b>:
+
</p>
+
<p>
+
<ol style="list-style-type: upper-latin;">
+
<li><p>
+
The number of GFP molecules produced in the cells is equivalent to the number of MEFL.
+
</p></li>
+
<li id="cond_equiv_molec"><p>
+
Given two TU with identical promoters, RBS and terminators, but with different CDS, under the same experimental conditions, the number of molecules produced by each TU is the same.
+
</p></li>
+
</ol>
+
</p>
+
<p>
+
Taking these axioms into account, the materials and procedure followed to calculate the MEFL/cell<sub>sfGFP</sub> factor were as follows.
+
</p>
+
<p><i>Materials:</i></p>
+
<ul>
+
<li>
+
<p>Measuring equipment: <b>Biotek Cytation3</b></p>
+
</li>
+
<li>
+
<p><b>96 well plate</b></p>
+
</li>
+
<li>
+
<p><b>MATLAB 2018a software</b></p>
+
</li>
+
</ul>
+
<p><i>Procedure:</i></p>
+
<ol>
+
<li><p>
+
From the fluorescein spectrum, and the fluorescence data obtained from the <a href="" target="_blank">Interlab Study experiment</a>, we apply medium, gain and efficiency <a href="#esquema_ops" class="inner-link">corrections </a>.
+
</p></li>
+
<li><p>
+
The data are introduced in the <a href="" target="_blank">Excel file</a> of the Interlab Study. From the <i>Fluorescein standard curve</i> sheet we can obtain the MEFL/RFU factor, and then calculate the MEFL/cell factor.
+
<img src="https://static.igem.org/mediawiki/2018/a/af/T--Valencia_UPV--calc_MEFLUPV2018.png">
+
<table style="width:100%">
+
    <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Value</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>Cuture volume (96 well plate)</p></td>
+
    <td><p>200 <meta charset="utf-8">&mu;L</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Cells per <meta charset="utf-8">&mu;L per OD unit</p></td>
+
    <td><p>200 cells/OD <meta charset="utf-8">&mu; L</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>MEFL/RFU factor</p></td>
+
    <td><p>4,38.10<sup>10</sup> MEFL/RFU</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p><b>MEFL/cell<sub>GFP</sub> factor</b></p></td>
+
    <td><p><b>273.7 MEFL OD/RFU cell</b></p></td>
+
  </tr>
+
</table>
+
</p></li>
+
<li><p>
+
We establish the protocol of the experiment and the parameters of our equipment. The experiment consists in the measurement of the absorbance and fluorescence of <b>two TU with identical promoter, RBS and transcriptional terminator</b>, but whose CDS codifies for <a href="http://parts.igem.org/Part:BBa_K2656105" target="_blank">GFP</a> and <a href="http://parts.igem.org/Part:BBa_K2656101" target="_blank">sfGFP</a> proteins. The most relevant information of the experiment is detailed in the following Table:
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Description</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>Time</p></td>
+
    <td><p>06:00:00 (HH:MM:SS). Measurement interval: 05:00 (MM:SS)</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Number of samples</p></td>
+
    <td><p>8 samples for each TU. Total samples: 16</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Temperature</p></td>
+
    <td><p>37 ºC</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Shake</p></td>
+
    <td><p>Double Orbital Continuous</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Absorbance. Optical Density (OD)</p></td>
+
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Excitacion wavelength</p></td>
+
    <td><p>485 nm</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Emission wavelength</p></td>
+
    <td><p>528 nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Gain</p></td>
+
    <td><p>60</p></td>
+
  </tr>
+
</table>
+
</p></li>
+
<li><p>
+
The experiment is introduced into the equipment and the absorbance and fluorescence curves are obtained, as well as the curve of <b>Fluorescence F/Absorbance OD</b> or <b>FOD ratio</b> with the applied medium fluorescence correction.
+
</p></li>
+
<li><p>
+
The absorbance and fluorescence data are exported to an Excel file.
+
</p></li>
+
<li><p>
+
Running the MATLAB <a href="https://static.igem.org/mediawiki/2018/c/c9/T--Valencia_UPV--GPF_sfGFP_comparisonUPV2018.txt" target="_blank">GFP_sfGFP_comparison.m</a> script:
+
<ol style="list-style-type: lower-latin;">
+
<li>
+
<p>We extract the FOD data from the GFP and sfGFP from the Excel file.</p>
+
</li>
+
<li>
+
<p>We apply the gain and efficiency <a href="#esquema_ops">corrections </a> of the spectrum to the FOD.</p>
+
</li>
+
<li>
+
<p>We plot the FOD curves and look for a stationary equilibrium time interval in the expression of the GFP and sfGFP proteins. In our <a href="#comp_graph" class="inner-link">experiment</a>, we have decided to chose the interval [145,290] min</p>
+
</li>
+
<li>
+
<p>We obtain the average value of both regions.</p>
+
</li>
+
<li>
+
<p>We calculate the number of GFP MEFLs by multiplying the FOD data by the MEFL/cell<sub>GFP</sub> factor.</p>
+
</li>
+
<li>
+
<p>If we assume that the number of molecules expressed by both TU is the same, <a href="#cond_equiv_molec" class="inner-link">the number of MEFL for the calculated GFP is the same as the number of MEFL for the sfGFP</a>.</p>
+
</li>
+
<li>
+
<p>We calculate the MEFL/cell<sub>sfGFP</sub> factor by dividing the MEFL number by the average FOD value of the sfGFP in the stationary region. In our case, MEFL/cell<sub>sfGFP</sub> = 121.4 MEFL·OD/RFU·cell.</p>
+
</li>
+
</ol>
+
</p></li>
+
</ol>
+
 
+
<a id="comp_graph"></a>
+
<img src="https://static.igem.org/mediawiki/2018/9/95/T--Valencia_UPV--comp_graphUPV2018.png">
+
 
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Reporter protein</p></th>
+
    <th><p>MEFL/cell factor (MEFL·OD/RFU·cell)</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>GFP</p></td>
+
    <td><p>273.7</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>sfGFP</p></td>
+
    <td><p>121.4</p></td>
+
  </tr>
+
  <tr>
+
</table>
+
<p>
+
With MEFL/cell factors, <b>FOD data</b> obtained in any experiment in which GFP or sfGFP was used as reporter proteins <b>can be transformed into equivalent fluorescein molecules</b> by applying the following ratio: <b>Molecules = (MEFL/cell factor) · FOD</b>.
+
</p>
+
<p>  
+
The new data give us a more accurate estimation of the number of molecules in the cell. Consequently, by relating the experimental results with the theoretical mathematical models in the <a href="#optimization" class="inner-link">optimization process</a>, the <b>parameters of the model acquire values more consistent with their physical significance</b>, working in equivalent molecules and not in arbitrary units.
+
</p>
+
 
+
+
              </div>
+
            </div>
+
        </div>
+
      </div>
+
  </div>
+
</section>
+
 
+
  
  

Revision as of 18:39, 12 October 2018

Stack Multipurpose HTML Template

Biological Design: The Golden Braid Assembly

We are continuously talking about a machine which can create its own genetic circuits, by using pre-designed parts, and ‘print’ them inside different living cell chassis. But how is Printeria going to perform all these complex reactions?

One of the first attempts to standardize a restriction enzyme-based DNA assembly method was BioBricks (1). However, its pairwise nature can make the construction of multipart systems, such as transcriptional units, time-consuming.

Printeria is using a state-of-the-art technology based on the Golden Gate Assembly, the Golden Braid Assembly Method. This technology uses type IIs restriction enzymes in order to cut all the parts and build these genetic circuits.

The Golden Gate assembly is based on type IIs enzymes. But what does this really mean?

Type IIs restriction enzymes are a group of endonucleases that recognize asymmetric double stranded DNA sequences and cleave outside of their recognition sequence. Thus, digestion leaves short single stranded overhangs with non-specific sequences.

This allows us to design the cleaving region so that we are creating a sticky end that will be pasted with the following part, and so on. This is the way in which directionality is maintained and parts are pasted in the desired order.

But why is this assembly technique so crucial for our machine to work?

  • Carefully positioning the recognition and cleavage sites, in opposite directions, for the entry and destination vectors leads into a final plasmid - once the DNA construction has been ligated -where there is no recognition site. So, once the insert has been ligated, it cannot be cut again. This allows simultaneous digestion and ligation in a one-pot reaction so that the whole assembly is taking place in a single step. This fact makes the Golden Braid Technology perfect for our machine to work, as the whole reaction should take place in a single droplet.

  • High efficiency. By means of modifying the different parameters we can end up with an almost 100% efficiency.

  • Robust reaction. The moving of the droplet across the PCB surface should not be a real problem for it to work.

  • The ability of cutting and pasting several parts by using the same enzymes makes the whole assembly easier to perform.

  • No scars are left when assembling the different parts.

The Golden Braid Assembly

In the GB assembly method the transcriptional units can be combined in binary steps to grow multigene structures (several TUs within the same destination plasmid). To do so, this system relies on the switching between two levels of plasmids, α and Ω , with different antibiotic resistance.

This Technology can mainly be divided into three different complexity levels:

Level 0 Assembly

This is the easiest Golden Braid reaction. It implies the removal of internal restriction sites for the enzymes used in GB (BsaI, BsmBI) and the addition of appropriate 4-nt flanking overhangs to convert a single basic part (promoter, RBS, CDS or terminator) into a standard part inside a predesigned vector (domestication to the GB grammar).

We are using this level 0 assembly in the lab, so that we domesticate every single part which Printeria will use to create its own transcriptional units.

The goal is to end up with a series of plasmids that contain each of the different promoters, RBSs, CDSs and terminators.

In our specific case, sticky ends of the parts are predesigned so that when cleaving our domestication vector pUD2 with BsmBI, they are pasted in a proper way.

This pUD2 plasmid has a chloramphenicol resistance and the lacZ cassette so that blue-white screening can be performed among the transformed E. coli cells.

This can be thought as Printeria’s PAST.

Figure 1: P10500 domestication vector. Yellow and black puzzle-like pieces represent the restriction sites for BsmbI. It has chloramphenicol resistance.
Figure 2: Designing of the different basic parts. The upper sequence corresponds with the strand that was ordered for synthesis. The lower sequence represents the complementary strand. BsmbI restriction sites are represented by the yellow and black cuts. The coloured sequences represent BsaI restriction sites when the part is inserted in our domestication vector. A 6-nucleotide scar was added to the RBS so that the ribosome could bind.
Figure 3: BsmbI digested part and vector.
Figure 4: Domestication of a promoter inside the P10500
Figure 5: Basic domesticated part. Light yellow and grey sequences represent the BsmbI sticky ends which have been glued. As the new plasmid is assembled, BsaI restriction sites appear (blue and pink cuts).
Figure 6: All Golden Braid compatible domesticated parts. BsaI restriction sites appear. They are represented by the coloured puzzle-like pieces.

Level 1 Assembly

This second level of complexity cannot be performed without having fulfilled the domestication of the parts. Once it is done, we can now create a simple transcriptional unit. This is what Printeria can assemble nowadays.

As said before, each of these domesticated parts now has a BsaI recognition site and a cleaving site which, when cleaved, will match with the contiguous parts. In other words, promoters will stick with the left end of our destination vector, pGreen alpha1 (kanr), using their left sticky end and with RBSs using their right end. At the same time CDSs will stick to these RBSs using their left sticky end, and to the terminators with their right end. Finally, the terminators will stick to the right end of our backbone destination vector so that, we will end up having a plasmid with a single TU inside it.

This is the PRESENT.

Figure 7: pGreen alpha 1 destination vector. The BsmbI restriction site will allow us to create a level 2 assembly.
Figure 8: BsaI digested destination and domesticated part to build a transcriptional unit.
Figure 9: Transcriptional unit assembly
Figure 10: TU insertion inside pGreen alpha1
Figure 11: Light coloured sequences represent the BsaI sticky ends which have been glued. As the new plasmid is assembled, BsmbI restriction sites appear (blue and dark blue) for a level 2 assembly.

Level 2 Assembly

This is the last level of complexity in which, by using a combination of α and Ω vectors, we can cut and paste several transcriptional units inside the same plasmid so that more complex genetic circuits can be created.

Printeria aims to arrive to this level of complexity someday so that its possibilities and combinations are infinite.

This will be Printeria’s FUTURE.

References

  1. Shetty RP, Endy D, Knight TF. Engineering BioBrick vectors from BioBrick parts. J Biol Eng. 2008;2: 5.

  2. Andreou AI, Nakayama N (2018) Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly. PLOS ONE 13(1): e0189892.

  3. Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, et al. (2011) GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLOS ONE 6(7): e21622.

  4. Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, et al. Golden- Braid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. Plant Physiol. 2013; 162: 1618–1631

CONTACT US igem.upv.2018@gmail.com