Difference between revisions of "Team:Valencia UPV/Results"

Line 155: Line 155:
 
               <a class="anchorOffset" id="lmModeling"></a>
 
               <a class="anchorOffset" id="lmModeling"></a>
 
               <h2 class="h2Modeling">Modeling</h2>
 
               <h2 class="h2Modeling">Modeling</h2>
               <p>
+
                
              <b>Do you think it is possible to mathematically describe a cell? Would you like to know the possibilities that modeling offers you?</b>
+
              </p>
+
              <p>
+
One of the fundamental bases of the Printeria project has undoubtedly been <b>mathematical modeling</b>. Thanks to the development and application of new mathematical models, it is possible to <b>quantify the expression of proteins</b> in cells, and therefore <b>characterize</b> through different experiments the parts designed by Printeria. From the Printeria Modeling team, we intend to reach different goals:
+
</p>
+
<ul>
+
<li><p>
+
<b>Design simple mathematical models</b> based on differential equations that describe the biochemical processes of a cell. With them, we can simulate the different genetic circuits that Printeria allows us to build.
+
</p></li>
+
<li><p>
+
Develop a <b>Simulation Tool</b> that allows the user to visualize a prediction of the results of their experiment before running it in Printeria.
+
</p></li>
+
<li><p>
+
<b>Optimize model parameters</b> to match simulation results to experimental data obtained from Printeria constructions.
+
</p></li>
+
<li><p>
+
<b><a href="https://2018.igem.org/Team:Valencia_UPV/Experiments#imCharact" target="_blank">Characterize the parts</a> of our <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection" target="_blank">Part Collection</a></b> from the optimization results and provide the user with all the information about the Printeria kit.
+
</p></li>
+
</ul>
+
<p>
+
Although in the development of the project we have dealt with all these aspects, all of them have a single purpose: demonstrate the importance and many applications of <b>describing in a mathematical way the biological processes</b> that take place inside the cell.
+
                </p>
+
 
               <!--BOTONES PARA MOVERSE POR LA PÁGINA -->
 
               <!--BOTONES PARA MOVERSE POR LA PÁGINA -->
 
               <!--Los enlaces están bien pero los ids a donde apuntan están descuadrados adrede para que al pulsar lleve un poco por encima del contenido -->
 
               <!--Los enlaces están bien pero los ids a donde apuntan están descuadrados adrede para que al pulsar lleve un poco por encima del contenido -->
Line 193: Line 171:
  
  
 
 
 
 
 
 
 
 
           
 
 
 
                   
 
 
 
 
                  <a class="anchorOffset" id="references"></a>
 
                  <h3>References</h3>
 
                  <ol class="references">
 
                  <li><p><a class="anchorOffset" id="references1"></a>
 
                  Picó, J., Vignoni, A., Picó-Marco, E., & Boada, Y. (2015). <i>Modelado de sistemas bioquímicos: De la ley de acción de masas a la aproximación lineal del ruido.</i> Revista Iberoamericana de Automática e Informática Industrial RIAI, 12(3), 241-252.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references2"></a>
 
                              Y. Boada, A. Vignoni, and J. Picó. Engineered control of genetic variability reveals interplay among quorum sensing, feedback regulation, and biochemical noise. ACS Synthetic Biology, 6(10):1903–1912, 2017a.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references3"></a>
 
                  Segel, L. A., & Slemrod, M. (1989). <i>The quasi-steady-state assumption: a case study in perturbation.</i> SIAM review, 31(3), 446-477.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references4"></a>
 
                  Boada, Y., Vignoni, A., Reynoso-Meza, G., & Picó, J. (2016).<i> Parameter identification in synthetic biological circuits using multi-objective optimization</i>. Ifac-Papersonline, 49(26), 77-82.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references5"></a>
 
                              R. Milo and R. Phillips. Cell Biology by the Numbers. First edition, 2015. ISBN9780815345374.
 
                  </p></li>
 
                  <li><p>
 
                  Boada, Y., Vignoni, A., & Picó, J. (2017). <i>Reduction of population variability in protein expression: A control engineering approach.</i> Actas de las XXXVIII Jornadas de Automática.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references7"></a>
 
                        U. Alon. An Introduction to Systems Biology. Desing Principles of Biological Circuits. Champan and Hall/CRC, Edition, 2007.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references8"></a>
 
                  Schleif, R. (2000). <i>Regulation of the L-arabinose operon of Escherichia coli.</i> Trends in Genetics, 16(12), 559-565.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references9"></a>
 
                  Boada, Y. (2018). <i>A systems engineering approach to model, tune and test synthetic gene circuits.</i> PhD. Thesis, Universitat Politècnica de València.
 
                  </p></li>
 
                  <li><p><a class="anchorOffset" id="references10"></a>
 
                              N. E. Buchler, U. Gerland, and T. Hwa. Nonlinear protein degradation and the function of genetic circuits. Proceedings of the National Academy of Sciences of the United States of America, 102(27):9559–9564, 2005.
 
                  </p></li>
 
                  </ol>
 
  
 
               </div>
 
               </div>

Revision as of 21:18, 14 October 2018

Stack Multipurpose HTML Template

Modeling

Models & Experiments

Simulation Tool

CONTACT US igem.upv.2018@gmail.com