Difference between revisions of "Team:Valencia UPV/Design"

 
(83 intermediate revisions by 6 users not shown)
Line 49: Line 49:
 
<div class="main-container">
 
<div class="main-container">
 
      
 
      
             <section style="/* background-color: #353535; *//* background-image: url(&quot;https://previews.123rf.com/images/bogdanhoda/bogdanhoda1504/bogdanhoda150400014/38730978-test-tubes-in-clinic-pharmacy-and-medical-research-laboratory-with-male-scientist-using-pipette.jpg&quot;); *//* background-size: 100%; */height:44.2em;margin-top: 0em;padding-top: 1.1em;" class="height-90 parallax">
+
             <section style="
              <div class="main-container" style="
+
; ; background-size: 100%;height: 44.2em;margin-top: 0em;padding-top: 1.1em;" class="height-90 parallax">
 +
<div class="main-container" style="
 
height: 100%;">
 
height: 100%;">
              <center style="
+
<center style="
 
height: 100%;">
 
height: 100%;">
              <div class="col-md-10" style="
+
<div class="col-md-10" style="
height: 100%;margin-top: 4em;">
+
  height: 100%;margin-top: 4em;">
<div id="logoPrinteria" class="item" style="
+
  <div id="logoPrinteria" class="item" style="
background-image: url(http://via.placeholder.com/1155x666);
+
    background-image: url(https://static.igem.org/mediawiki/2018/archive/4/47/20181015135001%21T--Valencia_UPV--DesignFondoUPV2018.jpeg);
height: 100%;
+
    height: 100%;
width: 100%;background-attachment: fixed; background-position: center; background-position-y: 100px; background-repeat: no-repeat">
+
    width: 100%;background-attachment: fixed;background-size: cover;"><img src="https://static.igem.org/mediawiki/2018/thumb/b/b6/T--Valencia_UPV--DesignTextoUPV2018.jpeg/1200px-T--Valencia_UPV--DesignTextoUPV2018.jpeg.png" style=" margin-top: 0px;">
   
+
      <a class="btn down inner-link active" href="#story" style="font-size: 82%;right: 50%;/* position: fixed; *//* bottom: 7%; */top: 85.2%;z-index: 99;background-color: white;position: absolute;border-radius: 80%;width: 3.8em;height: 3.8em;padding: 0;padding-top: 14px;">
    <div style="/* position: absolute; *//* top: 81%; *//* padding-left: 31em; */">
+
        <i class="stack-interface stack-down-open-big"></i>
<a class="btn down inner-link active" href="#story" style="font-size: 82%;/* position: fixed; *//* bottom: 7%; */top: 541px;z-index: 99;background-color: white;position: relative;border-radius: 80%;width: 3.8em;height: 3.8em;padding: 0;padding-top: 14px;">
+
      </a>
            <i class="stack-interface stack-down-open-big"></i>
+
    </div>  
        </a>
+
 
</div>
 
</div>
   
+
</center>
</div>
+
</div><div class="all-page-modals"></div><div class="all-page-modals"></div>
 +
<div class="all-page-modals"></div>
 +
</section>
 
</div>
 
</div>
               
 
              </center>
 
             
 
</div>
 
 
 
 
              </section></div>
 
 
<a class="anchorOffset" id="story"></a>
 
<a class="anchorOffset" id="story"></a>
 
<section class="feature-large" style="padding-top: 6em; padding-bottom: 50px; outline: none;" data-scroll-id="story" tabindex="-1">
 
<section class="feature-large" style="padding-top: 6em; padding-bottom: 50px; outline: none;" data-scroll-id="story" tabindex="-1">
Line 90: Line 84:
 
                   ">Index</h4>
 
                   ">Index</h4>
 
               <ul class="lateral">
 
               <ul class="lateral">
                   <li class="lateral" style="margin-bottom: 0px;padding-bottom: 1em;padding-top: initial;padding-left: 1em;">
+
                   <li class="lateral">
 
                     <div class="tab__title" style="
 
                     <div class="tab__title" style="
 
                         line-height: 1.3em;
 
                         line-height: 1.3em;
 
                         ">
 
                         ">
                         <a href="#imPrinteria" class="lateral inner-link" style="
+
                         <a href="#Challenges" class="lateral inner-link" style="
 
                           color: #353535;
 
                           color: #353535;
 
                           opacity: 1;
 
                           opacity: 1;
                           list-style-type: circle;
+
                           ">Biological Design Challenges</a>
                           ">Printeria experiments</a>
+
                    </div>
 +
                  </li>
 +
    <li class="lateral">
 +
                    <div class="tab__title" style="
 +
                        line-height: 1.3em;
 +
                        ">
 +
                        <a href="#Solutions" class="lateral inner-link" style="
 +
                          color: #353535;
 +
                          opacity: 1;
 +
                           ">Our proposal</a>
 
                     </div>
 
                     </div>
 
                   </li>
 
                   </li>
Line 105: Line 108:
 
                         line-height: 1.3em;
 
                         line-height: 1.3em;
 
                         ">
 
                         ">
                         <a href="#imCharact" class="lateral inner-link" style="
+
                         <a href="#GB" class="lateral inner-link" style="
 
                           color: #353535;
 
                           color: #353535;
 
                           opacity: 1;
 
                           opacity: 1;
                           ">Parts characterization</a>
+
                           ">The Golden Braid Assembly</a>
 
                     </div>
 
                     </div>
 
                   </li>
 
                   </li>
 +
<ul style="padding:0">
 
                   <li class="lateral">
 
                   <li class="lateral">
 
                     <div class="tab__title" style="
 
                     <div class="tab__title" style="
 
                         line-height: 1.3em;
 
                         line-height: 1.3em;
 
                         ">
 
                         ">
                         <a href="#imSpectral" class="lateral inner-link" style="
+
                         <a href="#Level0" class="lateral inner-link" style="
 
                           color: #353535;
 
                           color: #353535;
 
                           opacity: 1;
 
                           opacity: 1;
                           ">Spectral measurements</a>
+
                           ">Level 0</a>
 
                     </div>
 
                     </div>
 
                   </li>
 
                   </li>
                   </ul>
+
                   <li class="lateral">
               <ul class="tabs-content">
+
                    <div class="tab__title" style="
 +
                        line-height: 1.3em;
 +
                        ">
 +
                        <a href="#Level1" class="lateral inner-link" style="
 +
                          color: #353535;
 +
                          opacity: 1;
 +
                          ">Level 1</a>
 +
                    </div>
 +
                  </li>
 +
                  <li class="lateral">
 +
                    <div class="tab__title" style="
 +
                        line-height: 1.3em;
 +
                        ">
 +
                        <a href="#Level2" class="lateral inner-link" style="
 +
                          color: #353535;
 +
                          opacity: 1;
 +
                          ">Level 2</a>
 +
                    </div>
 +
                  </li>
 +
</ul>
 +
                  <li class="lateral">
 +
                    <div class="tab__title" style="
 +
                        line-height: 1.3em;
 +
                        ">
 +
                        <a href="#ref" class="lateral inner-link" style="
 +
                          color: #353535;
 +
                          opacity: 1;
 +
                          ">References</a>
 +
                    </div>
 +
                  </li>
 +
              <!--</ul>
 +
               <ul class="tabs-content">-->
 
               </ul>
 
               </ul>
 
             </div>
 
             </div>
Line 128: Line 163:
 
         <div class="col-md-9 col9Attr" style="padding-left: 6em;padding-right: 2em;">
 
         <div class="col-md-9 col9Attr" style="padding-left: 6em;padding-right: 2em;">
 
             <div>
 
             <div>
              <a class="anchorOffset" id="lmExperiments"></a>
+
           
              <h2 class="h2Experiments">Experiments</h2>
+
                         
          <p>
+
During the development of Printeria project we have performed different kinds of experiments for different pourposess. First we performed experiments related with the functioning of Printeria itself. (EXPLAIN MORE). Other kind of experiments we performed are the ones necesary to <b>characterize</b> the different parts designed by Printeria.
+
        The experiments we feromed for Printeria can be divided in these 3 classes:
+
</p>
+
<ul>
+
<li><p>
+
<b>Printeria experiments</b> based on differential equations that describe the biochemical processes of a cell. With them, we can simulate the different genetic circuits that Printeria allows us to build.
+
</p></li>
+
<li><p>
+
<b>Characterizing the parts of our <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection" target="_blank">Part Collection</a></b> from the optimization results and provide the user with all the information about the Printeria kit.
+
</p></li>
+
        <li><p>
+
          <b>Spectral measurements</b> to match simulation results to experimental data obtained from Printeria constructions.
+
        </p></li>
+
</ul>
+
              <!--BOTONES PARA MOVERSE POR LA PÁGINA -->
+
              <!--Los enlaces están bien pero los ids a donde apuntan están descuadrados adrede para que al pulsar lleve un poco por encima del contenido -->
+
              <div id="" data-scroll-id="" tabindex="-1" style="outline: none;margin-top: 1em;margin-bottom: 1em;justify-content: center;" class="row">
+
                  <div class="col-md-3" style="text-align: center;margin-right: 2em;">
+
                    <a class="inner-link" href="#imPrinteria"><img class="fotosModeling" src="https://static.igem.org/mediawiki/2018/c/ca/T--Valencia_UPV--instagramUPV2018.png"></a>
+
                    <p style="text-align: center !important; font-weight: bold;">Printeria experiments</p>
+
                  </div>
+
                  <div class="col-md-3" style="text-align: center;margin-right: 2em;">
+
                    <a class="inner-link" href="#imCharact"><img class="fotosModeling" src="https://static.igem.org/mediawiki/2018/c/ca/T--Valencia_UPV--instagramUPV2018.png"></a>
+
                    <p style="text-align: center !important; font-weight: bold;">Parts characterization </p>
+
                  </div>
+
                  <div class="col-md-3" style="text-align: center;margin-right: 2em;">
+
                    <a class="inner-link" href="#imSpectral"><img class="fotosModeling" src="https://static.igem.org/mediawiki/2018/c/ca/T--Valencia_UPV--instagramUPV2018.png"></a>
+
                    <p style="text-align: center !important; font-weight: bold;">Spectral measurements</p>
+
                  </div>
+
              </div>
+
              <!--FIN BOTONES PARA MOVERSE POR LA PÁGINA -->
+
  
 +
<a class="anchorOffset" id="Challenges"></a>
 +
<h3>Biological Design Challenges</h3>
 +
<p>
 +
As we have explained in <a href="https://2018.igem.org/Team:Valencia_UPV/Results#Goals"target="_blank"> our result page </a>, when developing Printeria, we need to optimize the largest number of variables in order to achieve the highest degree of automation.
 +
</p>
 +
<p>
 +
This is what we have tried to achieve with our <b>Biological Design</b>:
 +
</p>
 +
<ul><li><p>
 +
An assembly method that allows easy automation with sufficient robustness for the reaction to be carried out even under suboptimal conditions.
 +
</li></p>
 +
<li><p>
 +
A standard set of DNA parts for that assembly method
 +
</li></p>
 +
<li><p>
 +
A way to avoid plate screening to differentiate transformed bacteria with the vector containing the correct insert from those that do not have the insert, as this is the step that most complicates automation.
 +
</li></p>
 +
<li><p>
 +
A way to introduce competent <i>E. coli</i> that avoids us having to keep them deep-frozen
 +
</li></p></ul>
 +
<a class="anchorOffset" id="Solutions"></a>
 +
<p><b>How did we design the biological part of Printeria to get all this?</b></p>
  
              <div>
+
<p>First of all, the assembly method chosen is the <b>Golden Gate assembly method </b>. We have chosen this technology for several reasons:</p>
              <a class="anchorOffset" id="imPrinteria"></a>
+
                  <h3>Printeria experiments</h3>
+
  
 +
<p>This technology uses <b>type IIS restriction enzymes</b> in order to cut all the parts and build these genetic circuits. These enzymes are a group of endonucleases that recognize specific asymmetric double stranded DNA sequences and cleave outside of their recognition sequence. Thus, digestion leaves short single stranded overhangs with non-specific sequences. This allows us to define the cleavage sequence of each part enabling the assembly of multiple fragments of DNA in a single reaction. This is the way in which directionality is maintained and parts are assembled in the desired order.</p>
 +
<p><b>But why is this assembly method so crucial for our machine to work?</b></p>
  
 +
<ul>
 +
  <li>
 +
    <p>The design of the  entry and destination vectors with type IIS recognition sites in opposite directions leads into a <b>final plasmid</b> - once the DNA construction has been ligated -  where there is <b>no recognition site</b>. So, once the insert has been ligated, it cannot be cut again. This allows simultaneous digestion and ligation in <b>a one-pot reaction</b> so that the whole assembly is taking place in a single step. This fact makes the Golden Gate Technology perfect for our machine to work, as the whole reaction should take place in a single droplet.
 +
</p>
 +
  </li>
 +
  <li>
 +
    <p><b>Robust reaction</b>. Small modifications on the temperatures, number of cycles or reaction time of the Golden Gate protocol result in less efficient but still successful assemblies. Therefore, the moving of the droplet across the PCB surface as well as slight variations in the temperature during the reaction should not be a real problem for it to work.
 +
</p>
 +
  </li>
 +
    <li>
 +
    <p>The ability of cutting and pasting several parts by using  a single restriction enzyme and a ligase makes the whole <b>assembly easier to perform</b>.</p>
 +
  </li>
 +
      <li>
 +
    <p><b>Shorter scars</b> are left when assembling the different parts. If the overhangs are carefully designed, scarless DNA junctions can be obtained.</p>
 +
  </li>
 +
</ul>
 +
<p>To create the <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection"target="_blank">collection of parts</a> compatible with the Golden Gate technology, we have based ourselves on the <a href="#GB"class="inner-link">Golden Braid 3.0 assembly method</a> that is fully explained at the bottom of the page.</p>
  
                  <a class="anchorOffset" id="imCharact"></a
+
<p>The way to avoid the plate screening step is to use target plasmids previously digested with the endonuclease used in level 1 assemblies.Using the vectors in their linearized form, the number of transformations with vectors without the insert is greatly reduced, allowing cultures to be obtained in liquid medium expressing the protein of interest without the need to pass through the plate. However, the culture obtained will not be pure, and could only be obtained by isolating colonies (for example, with a triple streak).</p>
                  <h3>Parts characterization</h3>
+
  
                    <a class="anchorOffset" id="exp_protocol"></a>
+
<p>With regard to the way of entry of not deepfrozen competent<i> E.coli</i>, we have chosen electrocompetents stored at -20ºC. The reasons are as follows:</p>
                    <h4>Experimental protocol</h4>
+
<ul>
                    <p>
+
<li><p>
                    The Printeria Modeling and Lab team and have jointly designed an experimentation protocol for the laboratory experiments. Thanks to it, and from the colonies of the different UT the experimental data can be obtained, processed and ready to be optimized.
+
Electroporation is the most efficient method of transformation.
                    </p>
+
</p></li>
                    <p><i>Materials:</i></p>
+
<li><p>
<ul>
+
We checked that the electrocompetent cells keep the competence stored at -20ºC. You can check the data in <a href="https://2018.igem.org/Team:Valencia_UPV/Experiments"target="_blank">experiments</a>.
<li><a href=""></a>
+
</p></li>
<p>Printeria transcriptional units</b> (see our Printeria <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection" target="_blank">Part Collection</a>)</p>
+
<li><p>
</li>
+
The implementation in the hardware was very simple because the electroporator was already designed by the Valencia UPV iGEM team for the Hype It project.
<li>
+
</p></li></ul>
<p>Measuring equipment: <b>Biotek Cytation3</b></p>
+
</li>
+
<li>
+
<p><b>96 well plate</b></p>
+
</li>
+
</ul>
+
<p><i>Protocol:</i></p>
+
<ol>
+
<li><p>
+
A colony or a Glycerol stock corresponding to a TU assembled by our Lab team is used to inoculate LB culture medium (with the appropriate antibiotic, in the cases of the TU, with Kanamycin) and grow overnight at 37ºC and 250 r.p.m.
+
</p></li>
+
            <li><p>
+
              A 10:1 dilution of the culture is performed changing the culture media to M9 minimal medium and grow for 4 hours at 37ºC and 250 r.p.m.
+
            </p></li>
+
            <li><p>
+
              The culture is chilled in an ice-water bath anfd  the optical density at 600nm (OD<sub>600</sub>) of the culture is measured with a spectrophotometer. Then a calculation is performed (using this Excel sheet) to make a dilution in order to bring the OD<sub>600</sub> of the culture to 0.1OD<sub>600</sub> with the appropriate culture volume to inoculate 8 replicas into 200uL wells.
+
            </p></li>
+
<li><p>
+
The experiment is designed on the measuring equipment. In our case, we use the Biotek Cytation3 equipment. We establish the equipment parameters.
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Description</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>Time</p></td>
+
    <td><p><b>06:00:00 (HH:MM:SS)</b> usually. <b>Measurement interval: 05:00 (MM:SS)</b></p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Number of samples</p></td>
+
    <td><p>We normally set <b>8 samples of reporter protein for each TU colony</b></p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Number of medium samples</p></td>
+
    <td><p>We normally set <b>8 samples of medium</b>. We normally use <b>LB or M9 medium with Kanamycin</b></p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Temperature</p></td>
+
    <td><p>37 ºC</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Shake</p></td>
+
    <td><p>Double Orbital. Continuously. We shake the plate before each measure</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Absorbance. Optical Density (OD) measure</p></td>
+
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Excitacion wavelength</p></td>
+
    <td><p>We normally set <b>485 nm</b></p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Emission wavelength</p></td>
+
    <td><p>We normally set <b>528 nm</b></p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Gain (G)</p></td>
+
    <td><p>Normally the gain value is <b>G = 60</b>, although for proteins with lower fluorescence, it is recommended that G takes higher values.</p></td>
+
  </tr>
+
</table>
+
</p></li>
+
<li><p>
+
Samples are introduced into the 96 well plate and the experiment begins.
+
</p></li>
+
<li><p>
+
After the experiment, fluorescence and absorbance data obtained are exported to an Excel file.
+
</p></li>
+
<li><p>
+
We run the MATLAB <a href="https://static.igem.org/mediawiki/2018/1/13/T--Valencia_UPV--convert_dataUPV2018.txt" target="_blank">convert_data.m</a> script. This script uses several additional MATLAB files with which:
+
<ol style="list-style-type: lower-latin;">
+
<li><p>
+
We extract the fluorescence and absorbance matrices from the Excel file (see <a href="https://static.igem.org/mediawiki/2018/e/e4/T--Valencia_UPV--readExperiment3UPV2018.txt" target="_blank">readExperiment3.m</a> MATLAB function).
+
</p></li>
+
<li><p>
+
We apply the <a href="#esquema_ops" class="inner-link">corrections</a> to the data (see <a href="https://static.igem.org/mediawiki/2018/3/32/T--Valencia_UPV--plotExperiment_ybUPV2018.txt" target="_blank">plotExperiment_yb.m</a> MATLAB function).
+
</p></li>
+
<li><p>
+
We save the data of FOD, OD, molecules and time in a <b>.mat format</b> file.
+
</p></li>
+
</ol>
+
</p></li>
+
</ol>
+
  
  
                   
+
<a class="anchorOffset" id="GB"></a>
 +
<b><h3> The Golden Braid Assembly method </h3></b>
 +
<p> GoldenBraid method relies on Golden Gate Technology for the assembly of Composite part and introduces a double-loop strategy for the assembly of multigenic constructs. In the Golden Gate assembly method the Composite Parts can be combined in <b>binary steps</b> to create multigene structures (several Composite Parts within the same destination plasmid). To do so, this system relies on the switching between two levels of plasmids, <b>α and Ω</b> , with different antibiotic resistance.</p>
  
                <a class="anchorOffset" id="RBS_exp"></a>
+
<p> The assembly process with Golden Gate can be divided into three different steps:
                <h7><b>Experiments changing RBS</b></h7>
+
</p>
                <p>
+
<a class="anchorOffset" id="Level0"></a>
                We have designed <b>two experiments</b> following the same <a href="#exp_protocol" class="inner-link">experimental protocol</a>. In them we have assembled different Printeria TU with the same promoters, CDS (<a href="http://parts.igem.org/Part:BBa_K2656013" target="_blank">sfGFP</a> reporter protein) and transcriptional terminator, but with <b>different RBS</b>. These experiments were used in our modeling to complete the characterization of the part in the Printeria Collection.
+
<b><h4>Level 0 Assembly</h4></b>
                </p>
+
<p>This is the Golden Gate reaction needed for the adaptation of any DNA sequence to the Golden Gate standard. It implies the removal of internal restriction sites for the enzymes used in Golden Braid <b>(BsaI, BsmBI)</b> and the addition of appropriate 4-nt flanking overhangs to convert a single level 0 part (promoter, RBS, CDS or terminator)  into a standard part inside a predesigned vector <b>(adaptation to the Golden Braid grammar). </b>
                <a class="anchorOffset" id="RBS_list"></a>
+
</p>
                <p><b>Printeria RBS</b>:</p>
+
<p>We are using this level 0 assembly in the lab, so that we domesticate every single part which Printeria will use to create its own composite part. The goal is to end up with a series of plasmids that contain each of the different promoters, RBSs, CDSs and terminators.
                <ul>
+
</p>
                <li><p>
+
<p>In our specific case, sticky ends of the parts are predesigned so that upon cleavage with <b>BsmBI</b>, they are pasted into our domestication vector <b><a href="http://parts.igem.org/Part:BBa_P10500"> BBa_P10500</a></b> in a proper way.
                <b>Strong expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656009" target="_blank" style="padding-right: 0">BBa_K2656009</a>.
+
</p>
                </p></li>
+
<p>The <b><a href="http://parts.igem.org/Part:BBa_P10500"> BBa_P10500</a></b> vector has a chloramphenicol resistance and the lacZ cassette so that blue-white screening can be performed among the transformed <i>E. coli</i> cells.
                <li><p>
+
</p>
                <b>Medium expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656011" target="_blank" style="padding-right: 0">BBa_K2656011</a>.
+
                </p></li>
+
                <li><p>
+
                <b>Low expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656010" target="_blank" style="padding-right: 0">BBa_K2656010</a>.
+
                </p></li>
+
                <li><p>
+
                <b>Very low expression</b>: <a href="http://parts.igem.org/Part:BBa_K2656008" target="_blank" style="padding-right: 0">BBa_K2656008</a>, <a href="http://parts.igem.org/Part:BBa_K2656012" target="_blank" style="padding-right: 0">BBa_K2656012</a>.
+
                </p></li>
+
                </ul>
+
  
+
<img src="https://static.igem.org/mediawiki/2018/b/bb/T--Valencia_UPV--im51UPV2018.png" alt="">
<img src="https://static.igem.org/mediawiki/2018/b/b1/T--Valencia_UPV--optimization_exp1_RBS_graphUPV2018.png">
+
<h6>Figure 1: Designing of the different basic parts. BsmBI restriction sites are represented by the yellow and black puzzle-like pieces. The coloured sequences represent BsaI restriction sites when the part is inserted in our domestication vector. A 6-nucleotide scar was added to the RBS so that the ribosome could be correctly positioned.  
<img src="https://static.igem.org/mediawiki/2018/b/b1/T--Valencia_UPV--optimization_exp1_RBS_graphUPV2018.png">
+
</h6>
<img src="https://static.igem.org/mediawiki/2018/b/b1/T--Valencia_UPV--optimization_exp1_RBS_graphUPV2018.png">
+
<img src="https://static.igem.org/mediawiki/2018/d/de/T--Valencia_UPV--im52UPV2018.png" alt="">
+
<h6>Figure 2: BBa_P10500 domestication vector. Yellow and black puzzle-like pieces represent the restriction sites for BsmbI. It has chloramphenicol resistance.</h6>
+
  
<a class="anchorOffset" id="prom_exp"></a>
+
<div class="fotoConPie">
                <h7><b>Experiments changing promoters</b></h7>
+
  <div class="row" style="margin: 0;">
                <p>
+
    <div class="col-md-6" style="padding: 0;padding-right: 0.3em;">
                We have designed <b>two experiments</b> following the same <a href="#exp_protocol" class="inner-link">experimental protocol</a>. In them we have assembled different Printeria TU with the same RBS, CDS (<a href="http://parts.igem.org/Part:BBa_K2656022" target="_blank">GFP</a> reporter protein) and transcriptional terminator, and with <b>different promoters</b>. After obtaining the results, and following the <a href="#optimization" class="inner-link">optimization protocol</a>, we have obtained the parameters of the model and have validated our model.
+
      <img src="https://static.igem.org/mediawiki/2018/2/2e/T--Valencia_UPV--im53UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
                </p>
+
    </div>
                <a class="anchorOffset" id="promoter_list"></a>
+
    <div class="col-md-6" style="padding: 0;padding-left: 0.3em;">
                <p><b>Printeria promoters</b>:</p>
+
      <img src="https://static.igem.org/mediawiki/2018/1/1a/T--Valencia_UPV--im54UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
                <ul>
+
    </div>
                <li><p>
+
                <b>Strong promoters</b>: <a href="http://parts.igem.org/Part:BBa_K2656005" target="_blank" style="padding-right: 0">BBa_K2656005</a>
+
                </p></li>
+
                <li><p>
+
                <b>Medium promoters</b>: <a href="http://parts.igem.org/Part:BBa_K2656007" target="_blank" style="padding-right: 0">BBa_K2656007</a>
+
                </p></li>
+
                <li><p>
+
                <b>Low promoters</b>: <a href="http://parts.igem.org/Part:BBa_K2656004" target="_blank" style="padding-right: 0">BBa_K2656004</a>
+
                </p></li>
+
                </ul>
+
+
  
 +
      <h6>
 +
        Figure 3: BsmBI digested part and vector. Yellow and black puzzle-like pieces represent the cleavage sites for BsmBI.
 +
      </h6>
 +
    </div>
 +
  </div>
 +
</div>
  
 +
<img src="https://static.igem.org/mediawiki/2018/b/b5/T--Valencia_UPV--im55UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
 +
<h6>Figure 4: Basic domesticated part inside the BBa_P10500. Light yellow and grey blocks represent the BsmBI sticky ends which have been ligated. As the new plasmid is assembled, BsaI restriction sites appear (blue and pink puzzle-like pieces). </h6>
 +
<img src="https://static.igem.org/mediawiki/2018/4/49/T--Valencia_UPV--im56UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
 +
<h6>Figure 5:  Golden Braid compatible level 0 parts. BsaI restriction sites appear (coloured puzzle-like pieces).  </h6>
 +
<a class="anchorOffset" id="Level1"></a>
 +
<h4>Level 1 Assembly</h4>
 +
<p>This second level of complexity cannot be performed without having fulfilled the domestication of the parts (LEVEL 0). Once it is done, we can create a <b>composite part</b>.
 +
</p>
 +
<p>As said before, each domesticated parthas a <b>BsaI </b>recognition site and a cleavage site which, when cleaved, will match with the contiguous parts. In other words, promoters will stick with the left end of our destination vector, <b>pGreen alpha1 (KanR)</b>, using their left sticky ends, and with the left end of the RBSs using their right ends. At the same time, CDSs will stick to the right end of these RBSs using their left sticky ends, and to the left end of the terminators with their right ends. Finally, the terminators will stick to the right end of our backbone destination vector with their right ends, so that we will end up having a <b>plasmid with a single Composite Parts inside it</b>.
 +
</p>
 +
<p>After the Golden Braid one-step reaction, the recombinant plasmid has <b>BsmBI endonuclease recognition sites</b> flanking the insert sequence, so this construction could be then cleveaged to design <b>multigenetic constructions</b> with the Golden Braid <b>Level 2</b> (Figure 11). </p>
  
+
<img src="https://static.igem.org/mediawiki/2018/f/f5/T--Valencia_UPV--im57UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
 
+
<h6>Figure 6: pGreen alpha 1 destination vector. The puzzle-like pieces represent the restriction sites for BsaI. It has kanamycin resistance.
                  <a class="anchorOffset" id="imSpectral"></a> 
+
</h6>
                  <h3>Spectral measurements</h3>
+
<div class="fotoConPie">
                   
+
  <div class="row" style="margin: 0;">
                    <p>
+
    <div class="col-md-6" style="padding: 0;padding-right: 0.3em;">
This year, Valencia UPV iGEM team has designed an extensive <a href="https://2018.igem.org/Team:Valencia_UPV/Part_Collection" target="_blank">Part Collection</a> in purpose of allowing the user to design multiple genetic constructions and experiments. One of our main objectives has been to <b>show the user clear and structured information</b> about the pieces that make up the Printeria kit. For this reason, we have considered the characterization of the parts as a priority when developing the project. In this way, we have elaborated some <b>procedures</b> which have allowed us to systematically obtain and structure information from the parts. 
+
      <img src="https://static.igem.org/mediawiki/2018/f/f6/T--Valencia_UPV--im58UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
<ul>
+
    </div><div class="fotoConPie">
<li><p>
+
    <div class="col-md-6" style="padding: 0;padding-left: 0.3em;">
<a href="#spectra" class="inner-link">Procedure for obtaining protein spectra</a>
+
      <img src="https://static.igem.org/mediawiki/2018/3/32/T--Valencia_UPV--im59UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
</p></li>
+
    </div>
<li><p>
+
<a href="#comparison" class="inner-link">Comparison between sfGFP and GFP relative fluorescence intensity</a>
+
      <h6>
</p></li>
+
        Figure 7: BsaI digested destination and domesticated part to build a composite part.
</ul>                     
+
      </h6></div>
</p>
+
 
+
  </div>
<a id="spectra" class="anchorOffset"></a>
+
</div>
<h4>Procedure for obtaining protein spectra </h4>
+
<img src="https://static.igem.org/mediawiki/2018/4/42/T--Valencia_UPV--im60UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">
+
<h6>Figure 8: Composite part insertion inside pGreen alpha1</h6>
<p>
+
<img src="https://static.igem.org/mediawiki/2018/3/3e/T--Valencia_UPV--im61UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">  
Obtaining <b>excitation and emission spectra</b> is a fundamental aspect in the process of characterization of a fluorescent protein. <b>Each protein has a characteristic spectrum</b>, which indicates the energy in which the molecule is excited or emits at a certain wavelength.
+
<h6>Figure 9:  Light coloured sequences represent the BsaI sticky ends which have been ligated. As the new plasmid is assembled, BsmbI restriction sites appear (blue and dark blue).
</p>
+
</h6>
<p>
+
<a class="anchorOffset" id="Level2"></a>
The characterization of the reporter proteins by excitation and emission spectra are of great importance in experimentation. When contrasting experimental information with the theoretical results of mathematical models, we experiment with numerous reporter proteins, such as fluorescence proteins or chromoproteins. However, the <b>fluorescence data obtained must be corrected applying diferent operations</b> in order to obtain representative fluorescence data:
+
<h4>Level 2 Assembly</h4>
</p>
+
<p>This is the last level of complexity in which, by using the combination of the <b>α and Ω vectors</b>, we can <b>cut and paste several composite parts inside the same plasmid</b> so that more <b>complex genetic circuits</b> can be created.  
<ol style="list-style-type: upper-roman;">
+
</p>
<li><p>
+
  <p>Printeria aims to arrive to this level of complexity someday  making its possibilities and <b>combinations infinite</b>. This will be <b>Printeria’s FUTURE</b>.
The subtraction of the medium fluorescence:
+
</p>
<img src="https://static.igem.org/mediawiki/2018/9/97/T--Valencia_UPV--fsubsUPV2018.png">
+
<img src="https://static.igem.org/mediawiki/2018/0/0a/T--Valencia_UPV--im62UPV2018.png" alt="" style="margin-top: 1.8em;margin-bottom: 0.8em;border-radius: 0.3em;">  
</li></p>
+
<h6>Figure 10:  Composite Part ready to be used in a Level 2 assembly.
<li><p>
+
</h6>
The quotient of the fluorescence with the gain:
+
<img src="https://static.igem.org/mediawiki/2018/b/b0/T--Valencia_UPV--fgainUPV2018.png">
+
</li></p>
+
<li><p>
+
The quotient of the fluorescence with excitation and emission efficiency:
+
<img src="https://static.igem.org/mediawiki/2018/2/21/T--Valencia_UPV--fcorrUPV2018.png">
+
</li></p>
+
</ol>
+
<a id="esquema_ops" class="anchorOffset"></a>
+
<img src="https://static.igem.org/mediawiki/2018/6/6e/T--Valencia_UPV--esquema_opsUPV2018.png">
+
<p>
+
Until now, the corrections applied to the experiments performed with these reporter proteins were the subtraction of the fluorescence of the medium, and the division by the gain factor of the measuring equipment. However, <b>with the protein spectra we can also normalize the fluorescence data to values that would have been obtained with maximum excitation and emission</b>.
+
</p>
+
<p>
+
Owing to this reason, <b>a protocol has been established</b> in the lab by Lab and Modeling team <b>to obtain the spectrum of any reporter protein</b>.
+
</p>
+
<p><i>Materials:</i></p>
+
<ul>
+
<li>
+
<p>Measuring equipment: <b>Biotek Cytation3</b></p>
+
</li>
+
<li>
+
<p><b>96 well plate</b></p>
+
</li>
+
<li>
+
<p><b>MATLAB 2018a software</b></p>
+
</li>
+
</ul>
+
<p><i>Procedure:</i></p>
+
<ol>
+
<li><p>
+
We look for the <a href="https://www.thermofisher.com/es/es/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html" target="_blank" style="padding-right: 0">theoretical spectra</a> of the protein to be measured or similar molecules in order to determine the wavelength at which the protein is excited or emitted at maximum energy, i.e. where the theoretical spectral peaks occurs.  
+
</p></li>
+
<li><p>
+
We define the protocol of our equipment to get the absorbance and fluorescence dataset. In our protocol, the most important parameters to be established are summarized in the following Table.
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Description</p></th>  
+
  </tr>
+
  <tr>
+
    <td><p>Number of samples</p></td>
+
    <td><p>From <b>3 to 6 samples of reporter protein</b> and <b>3 samples of medium (LB or M9 medium)</b></p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Temperature</p></td>
+
    <td><p>37 ºC</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Shake</p></td>
+
    <td><p>Double Orbital. 01:00 (MM:SS)</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Absorbance. Optical Density (OD)</p></td>
+
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Excitacion and emission scans</p></td>
+
    <td><p>The scans occur between <b>two wavelength limit values</b>. The established range will depend on the theoretical spectrum of the protein.</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Excitacion and emission wavelengths</p></td>
+
    <td><p>These values will depend on the range, and therefore on the spectrum. Values far from the theoretical peak lead to more attenuated fluorescence curves, and values very close to the peak can lead to overlap and error in reading the data. Therefore, <b>a compromise must be reached between curve resolution and reading overlap</b>.</p></td>  
+
  </tr>
+
  <tr>
+
    <td><p>Gain (G)</p></td>
+
    <td><p>Normally the gain value is <b>G = 60</b>, although for proteins with lower fluorescence, it is recommended that G takes higher values.</p></td>
+
  </tr>
+
</table>
+
</p></li>
+
 
+
<li><p>
+
The experiment is introduced, and the experimental absorbance data and the fluorescence curves of the samples are obtained with the medium fluorescence correction applied.
+
</p></li>
+
 
+
<li><p>
+
The dataset is exported to an Excel file.
+
</p></li>
+
  
<li><p>
+
<a class="anchorOffset" id="ref"></a>
The MATLAB script <a href="https://static.igem.org/mediawiki/2018/f/f7/T--Valencia_UPV--spectrummUPV2018.txt" target="_blank">spectrum.m</a> for fluorescent proteins is executed:
+
<p></p>
<ol style="list-style-type: lower-latin;">
+
</div></div>
<li>
+
<p>Dataset is extracted from the Excel file. We discard readings that have suffered overlap, or that take negative values.</p>
+
</li>
+
<li>
+
<p>The fluorescence curves of all samples are averaged, and the result is normalised (from 0 to 100%).</p>
+
</li>
+
<li>
+
<p>Graphs of the normalized absorption and emission spectra are plotted. The X-axis represents the wavelength (nm), and the Y-axis represents the normalized fluorescence intensity (%).</p>
+
</li>
+
</ol>
+
</p></li>
+
 
+
</ol>
+
<img src="https://static.igem.org/mediawiki/2018/e/e8/T--Valencia_UPV--sfGFP_spectrumUPV2018.png">
+
 
+
<p>
+
In practical terms, the protocol has been applied to all of our reporter proteins: <a href="http://parts.igem.org/Part:BBa_K2656022" target="_blank">GFP</a>, <a href="http://parts.igem.org/Part:BBa_K2656013" target="_blank">sfGFP</a>, <a href="http://parts.igem.org/Part:BBa_K2656021" target="_blank">YFP</a> and <a href="http://parts.igem.org/Part:BBa_K2656014" target="_blank">mRFP</a>. All results can be found in our parts collection as well as in the <a href="http://parts.igem.org/Catalog" target="_blank">iGEM catalog</a>.
+
</p>
+
<p>
+
In the particular case of a reporter chromoprotein, such as <a href="http://parts.igem.org/Part:BBa_K2656018" target="_blank">amilCP</a>, we do not measure fluorescence, but absorbance. In this case, in rder to obtain the corrected absorbance curve, we must subtract from the cell absorbance data with the reporter protein the absorbance of a medium with cells without chromoprotein. Once the data have been corrected, we normalize them between values of 0 and 100 and with this we elaborate the graph. The protocol used can be found in the MATLAB script <a href="https://static.igem.org/mediawiki/2018/8/8b/T--Valencia_UPV--amilCP_spectrumUPV2018.txt" target="_blank">amilCP_spectrum.m</a>.
+
</p>
+
<p>
+
Finally, we have also obtained the spectra of the fluorescein molecule. These spectra have been used to correct the fluorescence data used in the <a href="" target="_blank">Interlab Study</a> to obtain the Relative Fluorescence Units (RFU) to Molecules of Equivalent Fluorochrome (MEFL) conversion factor. In addition, the <a href="#comparison" class="inner-link">comparison</a> between GFP and sfGFP proteins RFU has been possible thanks to fluorescein spectra.
+
+
</p>
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Value</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>Number of samples</p></td>
+
    <td><p>6 samples. 3 samples of medium (LB or M9 medium)</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Temperature</p></td>
+
    <td><p>37 ºC</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Shake</p></td>
+
    <td><p>Double Orbital. 01:00 (MM:SS)</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Absorbance. Optical Density (OD)</p></td>
+
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Emission range</p></td>
+
    <td><p>[495 - 580] nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Fixed excitation wavelength</p></td>
+
    <td><p>480 nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Excitation range</p></td>
+
    <td><p>[430 - 520] nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Fixed emission wavelength</p></td>
+
    <td><p>545 nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Gain (G)</p></td>
+
    <td><p>60</p></td>
+
  </tr>
+
</table>
+
<img src="https://static.igem.org/mediawiki/2018/1/11/T--Valencia_UPV--fluorescein_spectrumUPV2018.png">
+
 
+
<a id="comparison" class="anchorOffset"></a>
+
<h4>Comparison between sfGFP and GFP relative fluorescence intensity</h4>
+
+
<p>
+
<b>One of the main problems</b> we encounter when processing the results of experiments <b>in Synthetic Biology are the units of measurement of fluorescence data</b>. Unlike absorbance, where there is a simple conversion between Optical Density (OD) and cell number, <b>there is no direct relationship between the Relative Units of Fluorescence (RFU) and the number of protein molecules in the cell</b>. Moreover, RFUs vary among reporter fluoroproteins: for example, an RFU of the GFP protein does not have to be equivalent to an RFU of the mRFP protein, sfGFP, etc.
+
</p>
+
<p>
+
Thanks to initiatives such as the <a href="" target="_blank">Interlab Study</a>, we have been able to go a step further and obtain a <b>MEFL/cell<sub>GFP</sub> factor</b> of equivalence between the RFU of the <a href="http://parts.igem.org/Part:BBa_K2656022" target="_blank">GFP</a> protein and the Molecules of Equivalent Fluorochrome (MEFL). This relationship is an important breakthrough, as it can give us a more <b>accurate estimation</b> of the amount of GFP molecules in the cell.
+
</p>
+
<p>
+
However, <b>another reporter protein widely used in the experiments is the <a href="http://parts.igem.org/Part:BBa_K2656013" target="_blank">sfGFP</a></b>. This protein has a much faster folding than GFP, which translates into a <b>higher fluorescence intensity per molecule</b>. In order to obtain the MEFL/cell<sub>sfGFP</sub> factor from sfGFP, the Printeria Modeling and Lab teams have designed a <b>comparative experiment between both proteins</b>. The experiment consists of designing <b>two identical transcriptional units (TU), changing only the CDS sequence</b> so that each TU will produce GFP and sfGFP, respectively. It should be added that this experiment is based on <b>two fundamental assumptions</b>:
+
</p>
+
<p>
+
<ol style="list-style-type: upper-latin;">
+
<li><p>
+
The number of GFP molecules produced in the cells is equivalent to the number of MEFL.
+
</p></li>
+
<li id="cond_equiv_molec"><p>
+
Given two TU with identical promoters, RBS and terminators, but with different CDS, under the same experimental conditions, the number of molecules produced by each TU is the same.
+
</p></li>
+
</ol>
+
</p>
+
<p>
+
Taking these axioms into account, the materials and procedure followed to calculate the MEFL/cell<sub>sfGFP</sub> factor were as follows.
+
</p>
+
<p><i>Materials:</i></p>
+
<ul>
+
<li>
+
<p>Measuring equipment: <b>Biotek Cytation3</b></p>
+
</li>
+
<li>
+
<p><b>96 well plate</b></p>
+
</li>
+
<li>
+
<p><b>MATLAB 2018a software</b></p>
+
</li>
+
</ul>
+
<p><i>Procedure:</i></p>
+
<ol>
+
<li><p>
+
From the fluorescein spectrum, and the fluorescence data obtained from the <a href="" target="_blank">Interlab Study experiment</a>, we apply medium, gain and efficiency <a href="#esquema_ops" class="inner-link">corrections </a>.
+
</p></li>
+
<li><p>
+
The data are introduced in the <a href="" target="_blank">Excel file</a> of the Interlab Study. From the <i>Fluorescein standard curve</i> sheet we can obtain the MEFL/RFU factor, and then calculate the MEFL/cell factor.
+
<img src="https://static.igem.org/mediawiki/2018/a/af/T--Valencia_UPV--calc_MEFLUPV2018.png">
+
<table style="width:100%">
+
    <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Value</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>Cuture volume (96 well plate)</p></td>
+
    <td><p>200 <meta charset="utf-8">&mu;L</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Cells per <meta charset="utf-8">&mu;L per OD unit</p></td>
+
    <td><p>200 cells/OD <meta charset="utf-8">&mu; L</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>MEFL/RFU factor</p></td>
+
    <td><p>4,38.10<sup>10</sup> MEFL/RFU</p></td>
+
  </tr>
+
  <tr>
+
    <td><p><b>MEFL/cell<sub>GFP</sub> factor</b></p></td>
+
    <td><p><b>273.7 MEFL OD/RFU cell</b></p></td>
+
  </tr>
+
</table>
+
</p></li>
+
<li><p>
+
We establish the protocol of the experiment and the parameters of our equipment. The experiment consists in the measurement of the absorbance and fluorescence of <b>two TU with identical promoter, RBS and transcriptional terminator</b>, but whose CDS codifies for <a href="http://parts.igem.org/Part:BBa_K2656105" target="_blank">GFP</a> and <a href="http://parts.igem.org/Part:BBa_K2656101" target="_blank">sfGFP</a> proteins. The most relevant information of the experiment is detailed in the following Table:
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Parameters</p></th>
+
    <th><p>Description</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>Time</p></td>
+
    <td><p>06:00:00 (HH:MM:SS). Measurement interval: 05:00 (MM:SS)</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Number of samples</p></td>
+
    <td><p>8 samples for each TU. Total samples: 16</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Temperature</p></td>
+
    <td><p>37 ºC</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Shake</p></td>
+
    <td><p>Double Orbital Continuous</p></td>
+
  </tr>
+
    <tr>
+
    <td><p>Absorbance. Optical Density (OD)</p></td>
+
    <td><p>Wavelenght at <b>600 nm</b> emission</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Excitacion wavelength</p></td>
+
    <td><p>485 nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Emission wavelength</p></td>
+
    <td><p>528 nm</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>Gain</p></td>
+
    <td><p>60</p></td>
+
  </tr>
+
</table>
+
</p></li>
+
<li><p>
+
The experiment is introduced into the equipment and the absorbance and fluorescence curves are obtained, as well as the curve of <b>Fluorescence F/Absorbance OD</b> or <b>FOD ratio</b> with the applied medium fluorescence correction.
+
</p></li>
+
<li><p>
+
The absorbance and fluorescence data are exported to an Excel file.
+
</p></li>
+
<li><p>
+
Running the MATLAB <a href="https://static.igem.org/mediawiki/2018/c/c9/T--Valencia_UPV--GPF_sfGFP_comparisonUPV2018.txt" target="_blank">GFP_sfGFP_comparison.m</a> script:
+
<ol style="list-style-type: lower-latin;">
+
<li>
+
<p>We extract the FOD data from the GFP and sfGFP from the Excel file.</p>
+
</li>
+
<li>
+
<p>We apply the gain and efficiency <a href="#esquema_ops">corrections </a> of the spectrum to the FOD.</p>
+
</li>
+
<li>
+
<p>We plot the FOD curves and look for a stationary equilibrium time interval in the expression of the GFP and sfGFP proteins. In our <a href="#comp_graph" class="inner-link">experiment</a>, we have decided to chose the interval [145,290] min</p>
+
</li>
+
<li>
+
<p>We obtain the average value of both regions.</p>
+
</li>
+
<li>
+
<p>We calculate the number of GFP MEFLs by multiplying the FOD data by the MEFL/cell<sub>GFP</sub> factor.</p>
+
</li>
+
<li>
+
<p>If we assume that the number of molecules expressed by both TU is the same, <a href="#cond_equiv_molec" class="inner-link">the number of MEFL for the calculated GFP is the same as the number of MEFL for the sfGFP</a>.</p>
+
</li>
+
<li>
+
<p>We calculate the MEFL/cell<sub>sfGFP</sub> factor by dividing the MEFL number by the average FOD value of the sfGFP in the stationary region. In our case, MEFL/cell<sub>sfGFP</sub> = 121.4 MEFL·OD/RFU·cell.</p>
+
</li>
+
</ol>
+
</p></li>
+
</ol>
+
 
+
<a id="comp_graph"></a>
+
<img src="https://static.igem.org/mediawiki/2018/9/95/T--Valencia_UPV--comp_graphUPV2018.png">
+
 
+
<table style="width:100%">
+
  <tr>
+
    <th><p>Reporter protein</p></th>
+
    <th><p>MEFL/cell factor (MEFL·OD/RFU·cell)</p></th>
+
  </tr>
+
  <tr>
+
    <td><p>GFP</p></td>
+
    <td><p>273.7</p></td>
+
  </tr>
+
  <tr>
+
    <td><p>sfGFP</p></td>
+
    <td><p>121.4</p></td>
+
  </tr>
+
  <tr>
+
</table>
+
<p>
+
With MEFL/cell factors, <b>FOD data</b> obtained in any experiment in which GFP or sfGFP was used as reporter proteins <b>can be transformed into equivalent fluorescein molecules</b> by applying the following ratio: <b>Molecules = (MEFL/cell factor) · FOD</b>.
+
</p>
+
<p>
+
The new data give us a more accurate estimation of the number of molecules in the cell. Consequently, by relating the experimental results with the theoretical mathematical models in the <a href="#optimization" class="inner-link">optimization process</a>, the <b>parameters of the model acquire values more consistent with their physical significance</b>, working in equivalent molecules and not in arbitrary units.
+
</p>
+
 
+
+
              </div>
+
            </div>
+
        </div>
+
      </div>
+
  </div>
+
</section>
+
  
 +
<h3>References</h3>
 +
<ol>
 +
  <li>
 +
    <p>Shetty RP, Endy D, Knight TF. Engineering BioBrick vectors from BioBrick parts. J Biol Eng. 2008;2: 5.</p>
 +
  </li>
 +
  <li>
 +
    <p>Andreou AI, Nakayama N (2018) Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly. PLOS ONE 13(1): e0189892.
 +
</p>
 +
  </li>
 +
  <li>
 +
    <p>Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, et al. (2011) GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLOS ONE 6(7): e21622.
 +
</p>
 +
  </li>
 +
  <li>
 +
    <p>Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, et al. Golden- Braid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. Plant Physiol. 2013; 162: 1618–1631</p>
 +
  </li>
 +
</ol></p>
  
 +
</div></div></section>
  
  

Latest revision as of 20:29, 6 December 2018

Stack Multipurpose HTML Template

Biological Design Challenges

As we have explained in our result page , when developing Printeria, we need to optimize the largest number of variables in order to achieve the highest degree of automation.

This is what we have tried to achieve with our Biological Design:

  • An assembly method that allows easy automation with sufficient robustness for the reaction to be carried out even under suboptimal conditions.

  • A standard set of DNA parts for that assembly method

  • A way to avoid plate screening to differentiate transformed bacteria with the vector containing the correct insert from those that do not have the insert, as this is the step that most complicates automation.

  • A way to introduce competent E. coli that avoids us having to keep them deep-frozen

How did we design the biological part of Printeria to get all this?

First of all, the assembly method chosen is the Golden Gate assembly method . We have chosen this technology for several reasons:

This technology uses type IIS restriction enzymes in order to cut all the parts and build these genetic circuits. These enzymes are a group of endonucleases that recognize specific asymmetric double stranded DNA sequences and cleave outside of their recognition sequence. Thus, digestion leaves short single stranded overhangs with non-specific sequences. This allows us to define the cleavage sequence of each part enabling the assembly of multiple fragments of DNA in a single reaction. This is the way in which directionality is maintained and parts are assembled in the desired order.

But why is this assembly method so crucial for our machine to work?

  • The design of the entry and destination vectors with type IIS recognition sites in opposite directions leads into a final plasmid - once the DNA construction has been ligated - where there is no recognition site. So, once the insert has been ligated, it cannot be cut again. This allows simultaneous digestion and ligation in a one-pot reaction so that the whole assembly is taking place in a single step. This fact makes the Golden Gate Technology perfect for our machine to work, as the whole reaction should take place in a single droplet.

  • Robust reaction. Small modifications on the temperatures, number of cycles or reaction time of the Golden Gate protocol result in less efficient but still successful assemblies. Therefore, the moving of the droplet across the PCB surface as well as slight variations in the temperature during the reaction should not be a real problem for it to work.

  • The ability of cutting and pasting several parts by using a single restriction enzyme and a ligase makes the whole assembly easier to perform.

  • Shorter scars are left when assembling the different parts. If the overhangs are carefully designed, scarless DNA junctions can be obtained.

To create the collection of parts compatible with the Golden Gate technology, we have based ourselves on the Golden Braid 3.0 assembly method that is fully explained at the bottom of the page.

The way to avoid the plate screening step is to use target plasmids previously digested with the endonuclease used in level 1 assemblies.Using the vectors in their linearized form, the number of transformations with vectors without the insert is greatly reduced, allowing cultures to be obtained in liquid medium expressing the protein of interest without the need to pass through the plate. However, the culture obtained will not be pure, and could only be obtained by isolating colonies (for example, with a triple streak).

With regard to the way of entry of not deepfrozen competent E.coli, we have chosen electrocompetents stored at -20ºC. The reasons are as follows:

  • Electroporation is the most efficient method of transformation.

  • We checked that the electrocompetent cells keep the competence stored at -20ºC. You can check the data in experiments.

  • The implementation in the hardware was very simple because the electroporator was already designed by the Valencia UPV iGEM team for the Hype It project.

The Golden Braid Assembly method

GoldenBraid method relies on Golden Gate Technology for the assembly of Composite part and introduces a double-loop strategy for the assembly of multigenic constructs. In the Golden Gate assembly method the Composite Parts can be combined in binary steps to create multigene structures (several Composite Parts within the same destination plasmid). To do so, this system relies on the switching between two levels of plasmids, α and Ω , with different antibiotic resistance.

The assembly process with Golden Gate can be divided into three different steps:

Level 0 Assembly

This is the Golden Gate reaction needed for the adaptation of any DNA sequence to the Golden Gate standard. It implies the removal of internal restriction sites for the enzymes used in Golden Braid (BsaI, BsmBI) and the addition of appropriate 4-nt flanking overhangs to convert a single level 0 part (promoter, RBS, CDS or terminator) into a standard part inside a predesigned vector (adaptation to the Golden Braid grammar).

We are using this level 0 assembly in the lab, so that we domesticate every single part which Printeria will use to create its own composite part. The goal is to end up with a series of plasmids that contain each of the different promoters, RBSs, CDSs and terminators.

In our specific case, sticky ends of the parts are predesigned so that upon cleavage with BsmBI, they are pasted into our domestication vector BBa_P10500 in a proper way.

The BBa_P10500 vector has a chloramphenicol resistance and the lacZ cassette so that blue-white screening can be performed among the transformed E. coli cells.

Figure 1: Designing of the different basic parts. BsmBI restriction sites are represented by the yellow and black puzzle-like pieces. The coloured sequences represent BsaI restriction sites when the part is inserted in our domestication vector. A 6-nucleotide scar was added to the RBS so that the ribosome could be correctly positioned.
Figure 2: BBa_P10500 domestication vector. Yellow and black puzzle-like pieces represent the restriction sites for BsmbI. It has chloramphenicol resistance.
Figure 3: BsmBI digested part and vector. Yellow and black puzzle-like pieces represent the cleavage sites for BsmBI.
Figure 4: Basic domesticated part inside the BBa_P10500. Light yellow and grey blocks represent the BsmBI sticky ends which have been ligated. As the new plasmid is assembled, BsaI restriction sites appear (blue and pink puzzle-like pieces).
Figure 5: Golden Braid compatible level 0 parts. BsaI restriction sites appear (coloured puzzle-like pieces).

Level 1 Assembly

This second level of complexity cannot be performed without having fulfilled the domestication of the parts (LEVEL 0). Once it is done, we can create a composite part.

As said before, each domesticated parthas a BsaI recognition site and a cleavage site which, when cleaved, will match with the contiguous parts. In other words, promoters will stick with the left end of our destination vector, pGreen alpha1 (KanR), using their left sticky ends, and with the left end of the RBSs using their right ends. At the same time, CDSs will stick to the right end of these RBSs using their left sticky ends, and to the left end of the terminators with their right ends. Finally, the terminators will stick to the right end of our backbone destination vector with their right ends, so that we will end up having a plasmid with a single Composite Parts inside it.

After the Golden Braid one-step reaction, the recombinant plasmid has BsmBI endonuclease recognition sites flanking the insert sequence, so this construction could be then cleveaged to design multigenetic constructions with the Golden Braid Level 2 (Figure 11).

Figure 6: pGreen alpha 1 destination vector. The puzzle-like pieces represent the restriction sites for BsaI. It has kanamycin resistance.
Figure 7: BsaI digested destination and domesticated part to build a composite part.
Figure 8: Composite part insertion inside pGreen alpha1
Figure 9: Light coloured sequences represent the BsaI sticky ends which have been ligated. As the new plasmid is assembled, BsmbI restriction sites appear (blue and dark blue).

Level 2 Assembly

This is the last level of complexity in which, by using the combination of the α and Ω vectors, we can cut and paste several composite parts inside the same plasmid so that more complex genetic circuits can be created.

Printeria aims to arrive to this level of complexity someday making its possibilities and combinations infinite. This will be Printeria’s FUTURE.

Figure 10: Composite Part ready to be used in a Level 2 assembly.

References

  1. Shetty RP, Endy D, Knight TF. Engineering BioBrick vectors from BioBrick parts. J Biol Eng. 2008;2: 5.

  2. Andreou AI, Nakayama N (2018) Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly. PLOS ONE 13(1): e0189892.

  3. Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, et al. (2011) GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLOS ONE 6(7): e21622.

  4. Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, et al. Golden- Braid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. Plant Physiol. 2013; 162: 1618–1631

CONTACT US igem.upv.2018@gmail.com