Difference between revisions of "Team:Valencia UPV/Part Collection"

Line 235: Line 235:
 
                             </div>
 
                             </div>
  
                            <p style="
 
    line-height: 1.7;
 
">
 
  
                            I am member of the Instituto Universitario de Matemática Pura y Aplicada of the UPV. I am also interested in Biomedical Data Analysis, Graph Theory, Network Science, and in the applications of Mathematics to Computational, Systems and Synthetic Biology,  and Communication Networks. I am the author of more than 50 research articles published in international research journals. In addition, I have stayed at the following universities for short periods: in Bowling Green (OH) and Kent (OH) (USA), Lecce (Italy), Prague (Czech Rep.) And Tübingen (Germany).
 
 
                            Before being Director of the Department of Applied Mathematics, I held the position of Director of Academic Performance and Curricular Students Assessment Area of the Vice-rectorate of Students and Culture of the UPV. Previously I held these positions university: Deputy Dean of the ETSINF (formerly Faculty of Informatics) (2004-2009), and Secretary of the Commission of the Strategic Plan of the UPV for the period 2007-2014 (2005-2007).
 
 
                            </p>
 
  
 
                             </div>
 
                             </div>

Revision as of 20:31, 29 September 2018

Stack Multipurpose HTML Template

Part Collection

Introduction

Assembly methods using type IIS restriction enzymes (methods based on the Golden Gate technology) have a great advantage over those using Type II: The reaction is performed in a single step, without the need for gel band purification which decreases the efficiency of the assembly and is time consuming. In addition, with the Golden Gate technology it is possible to make assemblies with more than two pieces and the backbone in a single reaction. For these reasons, the Golden Gate technology is very well adapted to Printeria because its automation is less complicated than in other assembly methods.

It is because of these advantages that the Golden Gate technology is increasingly used. However, finding collections of parts in the same standard optimized for E. coli and well characterized is very complicated. That's why we decided to create our collection of basic parts: promoters, RBS, CDS and a terminator. This collection is based on some of the most used parts in E. coli from the Registry of Standard Biological Parts. To create this collection we used the Golden Braid 3.0 standard (link to that page). In addition, to give value to this collection, we have made a characterization of these parts.

In our collection we have represented different types of basic parts so that, combining them, we can create transcriptional units of different types: constitutive, inducible, repressible, depending on another construction …

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
  • Elemento de prueba

  • Elemento de prueba

  • Elemento de prueba

Firstname Lastname Age
Jill Smith 50
Eve Jackson 94
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent ut velit luctus, hendrerit mi eget, ornare turpis. Nulla placerat elementum ligula, non congue ligula.

CONTACT US igem.upv.2018@gmail.com