Blancamaco (Talk | contribs) |
Alberto cm98 (Talk | contribs) |
||
Line 94: | Line 94: | ||
line-height: 1.3em; | line-height: 1.3em; | ||
"> | "> | ||
− | <a href="# | + | <a href="#Introduction" class="lateral inner-link" style=" |
color: #353535; | color: #353535; | ||
opacity: 1; | opacity: 1; | ||
− | "> | + | ">Introduction</a> |
<!--<ul style="list-style-type: circle;"> | <!--<ul style="list-style-type: circle;"> | ||
− | + | <li><p> | |
− | + | <a href="#design_process" class="lateral inner-link" style=" | |
− | + | color: #353535; | |
− | + | opacity: 1; | |
− | + | ">Modeling process</a> | |
− | + | </p></li> | |
− | + | <li><p> | |
− | + | <a href="#const_models" class="lateral inner-link" style=" | |
− | + | color: #353535; | |
− | + | opacity: 1; | |
− | + | ">Constitutive expression models</a> | |
− | + | </p></li> | |
− | + | <li><p> | |
− | + | <a href="#ind_models" class="lateral inner-link" style=" | |
− | + | color: #353535; | |
− | + | opacity: 1; | |
− | + | ">Inducible expression models</a> | |
− | + | </p></li> | |
− | + | <li><p> | |
− | + | <a href="#optimization" class="lateral inner-link" style=" | |
− | + | color: #353535; | |
− | + | opacity: 1; | |
− | + | ">Multi-objective parameter optimization</a> | |
− | + | </p></li> | |
</ul>--> | </ul>--> | ||
</div> | </div> | ||
Line 133: | Line 133: | ||
color: #353535; | color: #353535; | ||
opacity: 1; | opacity: 1; | ||
− | "> | + | ">Introduction</a> |
</div> | </div> | ||
</li> | </li> | ||
Line 182: | Line 182: | ||
font-size: 21px; | font-size: 21px; | ||
margin-bottom: 0.8em; | margin-bottom: 0.8em; | ||
− | ">Introduction</h4> | + | ">Introduction<div id= "Introduction"></h4> |
<!--<h5 style=" | <!--<h5 style=" |
Revision as of 15:48, 8 October 2018
Interlab Study
Introduction
Do you imagine doing an experiment that could not be repeated? What if, after performing the same experiment several times, you obtain different results each time? This is a common problem throughout almost all laboratories in the entire world. A challenge, not just for Synthetic Biology but for any type of science, is taking reliable and repeatable measurements.
Over the past four years, the iGem Measurement Committee has been developing a series of experiments to make the biggest interlaboratory studies ever done in synthetic biology, and, in that way, try to fix all possible variables within a particular protocol.
WHAT IS THIS YEAR'S GOAL?
To know if there is any chance to reduce lab-to-lab variability in fluorescence measurements by normalizing to absolute cell count or c-forming units (CFUs) instead of optical density (OD).
In order to compute the cell count in our samples, we will use two orthogonal approaches:
Approach 1: Converting between absorbance of cells to absorbance of a known concentration of beads
The theory under how absorbance is measured is quite simple: a liquid sample of cells scatter light in a way or another depending on the number of cells this sample contains. The Committee provides us a sample with silica beads which are almost the same size and shape as a typical E. coli cell. So, when mixed with water, we obtain a liquid that should scatter light in a similar way as our E. coli sample does.
Because we know the concentration of beads, the absorbance measurement from a particular cell sample could be converted into an “equivalent concentration of beads” measurement, so that they are more universal and comparable measurements between different labs.
Approach 2: Counting c-forming units (CFUs) from the sample
This method relies on the idea that every grown c in our plate comes from a single cell. So, if we spread a known cell culture volume over an agar plate and then we count the number of colonies, we should have an idea on how many cells our liquid sample had. We will have to determine the number of CFUs in positive and negative control samples in order to compute a conversion factor from absorbance to CFU.
Plate reader setup
Absorbance600
Absorbance Endpoint
Full Plate
Wavelengths: 600
Read Speed: Normal, Delay: 100 msec, Measurements/Data Point: 8
FLUORESCENCE
Excitation: 485, Emission: 528
Optics: Top, Gain: 50
Light Source: Xenon Flash, Lamp Energy: High
Read Speed: Normal, Delay: 100 msec, Measurements/Data Point: 10
Read Height: 7 mm
USED PARTS
Device
Part number
Plate
Location
Negative control
BBa_R0040
Kit Plate 7
Well 2D
Positive control
BBa_I20270
Kit Plate 7
Well 2B
Test Device 1
BBa_J364000
Kit Plate 7
Well 2F
Test Device 2
BBa_J364001
Kit Plate 7
Well 2H
Test Device 3
BBa_J364002
Kit Plate 7
Well 2J
Test Device 4
BBa_J364007
Kit Plate 7
Well 2L
Test Device 5
BBa_J364008
Kit Plate 7
Well 2N
Test Device 6
BBa_J364009
Kit Plate 7
Well 2P
CALIBRATION 1: OD600 REFERENCE POINT
Using LUDOX CL-X as a point reference to obtain a conversion factor to transform our absorbance (Abs600) data from our plate reader into a comparable OD 600 measurement as would be obtained in a spectrophotometer.
LUDOX CL-X
H2O
R1
0.061
0.051
R2
0.060
0.049
R3
0.061
0.043
R4
0.062
0.049
Arith. Mean
0.061
0.048
Corrected Abs600
0.013
Reference OD600
0.063
OD600/Abs600
4.846
CALIBRATION 2: PARTICLE STANDARD CURVE
This allows us to construct a standard curve of particle concentration which can be used to convert Abs 600 measurements to an estimated number of cells.
CALIBRATION 3: FLUORESCENCE STANDARD CURVE
Absolute fluorescence values cannot be directly compared from one instrument to another. In order to compare fluorescence output of test devices between teams, it is necessary for each team to create a standard fluorescence curve.
EXPERIMENT
Fluorescence Raw Readings:
Hour 0:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
LB+Chlor (blank)
C1, R1
3618
3087
5355
2950
3402
4799
4112
3901
3350
C1, R2
3648
3414
5158
2887
3260
4647
4159
3758
3193
C1, R3
3273
3442
5077
1611
3331
4607
3972
3793
3234
C1, R4
3301
1381
5307
1074
3446
4519
4416
3804
3221
C2, R1
3350
3537
5091
3702
3976
4621
4517
3969
3256
C2, R2
3262
3409
4758
3623
3660
4208
4679
3867
3265
C2, R3
3255
3401
4784
3620
3662
4248
4481
3951
3231
C2, R4
3225
3020
4855
3518
3672
4451
4281
4183
4070
Hour 6:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
LB+Chlor (blank)
C1, R1
4087
23103
44980
7751
4312
29208
6183
10720
3306
C1, R2
4238
23435
46319
7594
4341
28505
6522
10895
3177
C1, R3
4194
23871
45601
7757
4371
28765
6359
10515
3260
C1, R4
4195
24568
45744
7709
4546
29372
6156
11334
3205
C2, R1
4398
11707
43194
17428
4756
28009
11866
10612
3269
C2, R2
4351
12443
43496
17570
4804
28545
11928
10545
3250
C2, R3
4291
11451
43156
17421
4796
28475
11726
10544
3295
C2, R4
4292
12396
42704
17353
4938
28869
11517
10546
3231
Abs600 Raw Readings:
Hour 0:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
LB+Chlor (blank)
C1, R1
0.067
0.055
0.060
0.056
0.059
0.059
0.057
0.059
0.047
C1, R2
0.061
0.056
0.058
0.054
0.059
0.056
0.058
0.058
0.046
C1, R3
0.057
0.058
0.057
0.047
0.065
0.058
0.056
0.059
0.045
C1, R4
0.062
0.047
0.058
0.048
0.058
0.057
0.057
0.059
0.045
C2, R1
0.055
0.055
0.058
0.055
0.059
0.055
0.056
0.056
0.046
C2, R2
0.055
0.059
0.054
0.056
0.057
0.054
0.059
0.058
0.047
C2, R3
0.071
0.055
0.056
0.071
0.056
0.057
0.057
0.058
0.046
C2, R4
0.056
0.059
0.055
0.057
0.055
0.059
0.056
0.059
0.049
Hour 6:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
LB+Chlor (blank)
C1, R1
0.595
0.513
0.471
0.391
0.554
0.518
0.083
0.487
0.066
C1, R2
0.567
0.527
0.508
0.363
0.556
0.519
0.084
0.501
0.053
C1, R3
0.566
0.524
0.479
0.381
0.566
0.501
0.083
0.490
0.059
C1, R4
0.580
0.570
0.530
0.373
0.549
0.559
0.088
0.551
0.051
C2, R1
0.611
0.513
0.519
0.531
0.515
0.530
0.117
0.520
0.053
C2, R2
0.562
0.538
0.523
0.536
0.522
0.543
0.116
0.517
0.057
C2, R3
0.561
0.493
0.517
0.507
0.518
0.502
0.106
0.488
0.054
C2, R4
0.555
0.537
0.498
0.512
0.533
0.508
0.101
0.491
0.06
uM Fluorescein/OD:
Hour 0:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
C1, R1
0.415
-1.019
4.780
-1.377
0.134
3.742
2.362
1.423
C1, R2
0.940
0.685
5.075
-1.185
0.160
4.506
2.495
1.459
C1, R3
0.101
0.496
4.760
-25.149
0.150
3.273
2.079
1.237
C1, R4
0.155
-28.512
4.973
-22.179
0.536
3.352
3.086
1.291
C2, R1
0.324
0.968
4.739
1.536
1.716
4.700
3.908
2.210
C2, R2
-0.012
0.372
6.610
1.233
1.224
4.175
3.652
1.696
C2, R3
0.030
0.585
4.813
0.482
1.336
2.865
3.522
1.859
C2, R4
-3.741
-3.254
4.055
-2.138
-2.056
1.581
0.934
0.350
Hour 6:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
C1, R1
0.046
1.373
3.189
0.424
0.064
1.776
5.245
0.546
C1, R2
0.064
1.325
2.939
0.442
0.072
1.684
3.344
0.534
C1, R3
0.057
1.374
3.124
0.433
0.068
1.788
4.002
0.522
C1, R4
0.058
1.276
2.752
0.433
0.083
1.596
2.472
0.504
C2, R1
0.063
0.568
2.655
0.918
0.100
1.607
4.163
0.487
C2, R2
0.068
0.592
2.677
0.927
0.104
1.613
4.558
0.491
C2, R3
0.061
0.576
2.668
0.966
0.100
1.742
5.025
0.518
C2, R4
0.066
0.595
2.793
0.968
0.112
1.764
6.263
0.526
MEFL/particle:
Hour 0:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
C1, R1
1.31E+05
-3.22E+05
1.51E+06
-4.35E+05
4.24E+04
1.18E+06
7.46E+05
4.50E+05
C1, R2
2.97E+05
2.16E+05
1.60E+06
-3.75E+05
5.05E+04
1.42E+06
7.89E+05
4.61E+05
C1, R3
3.18E+04
1.57E+05
1.50E+06
-7.95E+06
4.75E+04
1.03E+06
6.57E+05
3.91E+05
C1, R4
4.90E+04
-9011826
1.57E+06
-7.01E+06
1.70E+05
1.06E+06
9.75E+05
4.08E+05
C2, R1
1.02E+05
3.06E+05
1.50E+06
4.85E+05
5.43E+05
1.49E+06
1.24E+06
6.98E+05
C2, R2
-3.67E+03
1.18E+05
2.09E+06
3.90E+05
3.87E+05
1.32E+06
1.15E+06
5.36E+05
C2, R3
9.40E+03
1.85E+05
2.09E+06
1.52E+05
4.22E+05
9.06E+05
1.11E+06
5.88E+05
C2, R4
-1.18E+06
-1.03E+06
1.28E+06
-6.76E+05
-6.50E+05
3.73E+05
2.95E+05
1.11E+05
Hour 6:
Neg. Control
Pos. Control
Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
C1, R1
1.45E+04
4.34E+05
1.01E+06
1.34E+05
2.02E+04
5.61E+05
1.66E+06
1.73E+05
C1, R2
2.02E+04
4.19E+05
9.29E+05
1.40E+05
2.27E+04
5.32E+05
1.06E+06
1.69E+05
C1, R3
1.80E+04
4.34E+05
9.87E+05
1.37E+05
2.15E+04
5.65E+05
1.26E+06
1.65E+05
C1, R4
1.83E+04
4.03E+05
8.70E+05
1.37E+05
2.64E+04
5.05E+05
7.81E+05
1.59E+05
C2, R1
1.98E+04
1.80E+05
8.39E+05
2.90E+05
3.15E+04
5.08E+05
1.32E+06
1.54E+05
C2, R2
2.14E+04
1.87E+05
8.46E+05
2.93E+05
3.27E+04
5.10E+05
1.44E+06
1.55E+05
C2, R3
1.92E+04
1.82E+05
8.43E+0.5
3.05E+05
3.17E+04
5.51E+05
1.59E+06
1.64E+05
C2, R4
2.10E+04
1.88E+05
8.83E+05
3.06E+05
3.54E+04
5.61E+05
1.98E+06
1.66E+05
Do you imagine doing an experiment that could not be repeated? What if, after performing the same experiment several times, you obtain different results each time? This is a common problem throughout almost all laboratories in the entire world. A challenge, not just for Synthetic Biology but for any type of science, is taking reliable and repeatable measurements.
Over the past four years, the iGem Measurement Committee has been developing a series of experiments to make the biggest interlaboratory studies ever done in synthetic biology, and, in that way, try to fix all possible variables within a particular protocol.
WHAT IS THIS YEAR'S GOAL?
To know if there is any chance to reduce lab-to-lab variability in fluorescence measurements by normalizing to absolute cell count or c-forming units (CFUs) instead of optical density (OD).
In order to compute the cell count in our samples, we will use two orthogonal approaches:
Approach 1: Converting between absorbance of cells to absorbance of a known concentration of beads
The theory under how absorbance is measured is quite simple: a liquid sample of cells scatter light in a way or another depending on the number of cells this sample contains. The Committee provides us a sample with silica beads which are almost the same size and shape as a typical E. coli cell. So, when mixed with water, we obtain a liquid that should scatter light in a similar way as our E. coli sample does.
Because we know the concentration of beads, the absorbance measurement from a particular cell sample could be converted into an “equivalent concentration of beads” measurement, so that they are more universal and comparable measurements between different labs.
Approach 2: Counting c-forming units (CFUs) from the sample
This method relies on the idea that every grown c in our plate comes from a single cell. So, if we spread a known cell culture volume over an agar plate and then we count the number of colonies, we should have an idea on how many cells our liquid sample had. We will have to determine the number of CFUs in positive and negative control samples in order to compute a conversion factor from absorbance to CFU.
Plate reader setup
Absorbance600
Absorbance Endpoint
Full Plate
Wavelengths: 600
Read Speed: Normal, Delay: 100 msec, Measurements/Data Point: 8
FLUORESCENCE
Excitation: 485, Emission: 528
Optics: Top, Gain: 50
Light Source: Xenon Flash, Lamp Energy: High
Read Speed: Normal, Delay: 100 msec, Measurements/Data Point: 10
Read Height: 7 mm
USED PARTS
Device | Part number | Plate | Location |
---|---|---|---|
Negative control | BBa_R0040 | Kit Plate 7 | Well 2D |
Positive control | BBa_I20270 | Kit Plate 7 | Well 2B |
Test Device 1 | BBa_J364000 | Kit Plate 7 | Well 2F |
Test Device 2 | BBa_J364001 | Kit Plate 7 | Well 2H |
Test Device 3 | BBa_J364002 | Kit Plate 7 | Well 2J |
Test Device 4 | BBa_J364007 | Kit Plate 7 | Well 2L |
Test Device 5 | BBa_J364008 | Kit Plate 7 | Well 2N |
Test Device 6 | BBa_J364009 | Kit Plate 7 | Well 2P |
CALIBRATION 1: OD600 REFERENCE POINT
Using LUDOX CL-X as a point reference to obtain a conversion factor to transform our absorbance (Abs600) data from our plate reader into a comparable OD 600 measurement as would be obtained in a spectrophotometer.
LUDOX CL-X | H2O | |
---|---|---|
R1 | 0.061 | 0.051 |
R2 | 0.060 | 0.049 |
R3 | 0.061 | 0.043 |
R4 | 0.062 | 0.049 |
Arith. Mean | 0.061 | 0.048 |
Corrected Abs600 | 0.013 | |
Reference OD600 | 0.063 | |
OD600/Abs600 | 4.846 |
CALIBRATION 2: PARTICLE STANDARD CURVE
This allows us to construct a standard curve of particle concentration which can be used to convert Abs 600 measurements to an estimated number of cells.
CALIBRATION 3: FLUORESCENCE STANDARD CURVE
Absolute fluorescence values cannot be directly compared from one instrument to another. In order to compare fluorescence output of test devices between teams, it is necessary for each team to create a standard fluorescence curve.
EXPERIMENT
Fluorescence Raw Readings:
Hour 0: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 | LB+Chlor (blank) |
---|---|---|---|---|---|---|---|---|---|
C1, R1 | 3618 | 3087 | 5355 | 2950 | 3402 | 4799 | 4112 | 3901 | 3350 |
C1, R2 | 3648 | 3414 | 5158 | 2887 | 3260 | 4647 | 4159 | 3758 | 3193 |
C1, R3 | 3273 | 3442 | 5077 | 1611 | 3331 | 4607 | 3972 | 3793 | 3234 |
C1, R4 | 3301 | 1381 | 5307 | 1074 | 3446 | 4519 | 4416 | 3804 | 3221 |
C2, R1 | 3350 | 3537 | 5091 | 3702 | 3976 | 4621 | 4517 | 3969 | 3256 |
C2, R2 | 3262 | 3409 | 4758 | 3623 | 3660 | 4208 | 4679 | 3867 | 3265 |
C2, R3 | 3255 | 3401 | 4784 | 3620 | 3662 | 4248 | 4481 | 3951 | 3231 |
C2, R4 | 3225 | 3020 | 4855 | 3518 | 3672 | 4451 | 4281 | 4183 | 4070 |
Hour 6: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 | LB+Chlor (blank) |
---|---|---|---|---|---|---|---|---|---|
C1, R1 | 4087 | 23103 | 44980 | 7751 | 4312 | 29208 | 6183 | 10720 | 3306 |
C1, R2 | 4238 | 23435 | 46319 | 7594 | 4341 | 28505 | 6522 | 10895 | 3177 |
C1, R3 | 4194 | 23871 | 45601 | 7757 | 4371 | 28765 | 6359 | 10515 | 3260 |
C1, R4 | 4195 | 24568 | 45744 | 7709 | 4546 | 29372 | 6156 | 11334 | 3205 |
C2, R1 | 4398 | 11707 | 43194 | 17428 | 4756 | 28009 | 11866 | 10612 | 3269 |
C2, R2 | 4351 | 12443 | 43496 | 17570 | 4804 | 28545 | 11928 | 10545 | 3250 |
C2, R3 | 4291 | 11451 | 43156 | 17421 | 4796 | 28475 | 11726 | 10544 | 3295 |
C2, R4 | 4292 | 12396 | 42704 | 17353 | 4938 | 28869 | 11517 | 10546 | 3231 |
Abs600 Raw Readings:
Hour 0: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 | LB+Chlor (blank) |
---|---|---|---|---|---|---|---|---|---|
C1, R1 | 0.067 | 0.055 | 0.060 | 0.056 | 0.059 | 0.059 | 0.057 | 0.059 | 0.047 |
C1, R2 | 0.061 | 0.056 | 0.058 | 0.054 | 0.059 | 0.056 | 0.058 | 0.058 | 0.046 |
C1, R3 | 0.057 | 0.058 | 0.057 | 0.047 | 0.065 | 0.058 | 0.056 | 0.059 | 0.045 |
C1, R4 | 0.062 | 0.047 | 0.058 | 0.048 | 0.058 | 0.057 | 0.057 | 0.059 | 0.045 |
C2, R1 | 0.055 | 0.055 | 0.058 | 0.055 | 0.059 | 0.055 | 0.056 | 0.056 | 0.046 |
C2, R2 | 0.055 | 0.059 | 0.054 | 0.056 | 0.057 | 0.054 | 0.059 | 0.058 | 0.047 |
C2, R3 | 0.071 | 0.055 | 0.056 | 0.071 | 0.056 | 0.057 | 0.057 | 0.058 | 0.046 |
C2, R4 | 0.056 | 0.059 | 0.055 | 0.057 | 0.055 | 0.059 | 0.056 | 0.059 | 0.049 |
Hour 6: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 | LB+Chlor (blank) |
---|---|---|---|---|---|---|---|---|---|
C1, R1 | 0.595 | 0.513 | 0.471 | 0.391 | 0.554 | 0.518 | 0.083 | 0.487 | 0.066 |
C1, R2 | 0.567 | 0.527 | 0.508 | 0.363 | 0.556 | 0.519 | 0.084 | 0.501 | 0.053 |
C1, R3 | 0.566 | 0.524 | 0.479 | 0.381 | 0.566 | 0.501 | 0.083 | 0.490 | 0.059 |
C1, R4 | 0.580 | 0.570 | 0.530 | 0.373 | 0.549 | 0.559 | 0.088 | 0.551 | 0.051 |
C2, R1 | 0.611 | 0.513 | 0.519 | 0.531 | 0.515 | 0.530 | 0.117 | 0.520 | 0.053 |
C2, R2 | 0.562 | 0.538 | 0.523 | 0.536 | 0.522 | 0.543 | 0.116 | 0.517 | 0.057 |
C2, R3 | 0.561 | 0.493 | 0.517 | 0.507 | 0.518 | 0.502 | 0.106 | 0.488 | 0.054 |
C2, R4 | 0.555 | 0.537 | 0.498 | 0.512 | 0.533 | 0.508 | 0.101 | 0.491 | 0.06 |
uM Fluorescein/OD:
Hour 0: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 |
---|---|---|---|---|---|---|---|---|
C1, R1 | 0.415 | -1.019 | 4.780 | -1.377 | 0.134 | 3.742 | 2.362 | 1.423 |
C1, R2 | 0.940 | 0.685 | 5.075 | -1.185 | 0.160 | 4.506 | 2.495 | 1.459 |
C1, R3 | 0.101 | 0.496 | 4.760 | -25.149 | 0.150 | 3.273 | 2.079 | 1.237 |
C1, R4 | 0.155 | -28.512 | 4.973 | -22.179 | 0.536 | 3.352 | 3.086 | 1.291 |
C2, R1 | 0.324 | 0.968 | 4.739 | 1.536 | 1.716 | 4.700 | 3.908 | 2.210 |
C2, R2 | -0.012 | 0.372 | 6.610 | 1.233 | 1.224 | 4.175 | 3.652 | 1.696 |
C2, R3 | 0.030 | 0.585 | 4.813 | 0.482 | 1.336 | 2.865 | 3.522 | 1.859 |
C2, R4 | -3.741 | -3.254 | 4.055 | -2.138 | -2.056 | 1.581 | 0.934 | 0.350 |
Hour 6: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 |
---|---|---|---|---|---|---|---|---|
C1, R1 | 0.046 | 1.373 | 3.189 | 0.424 | 0.064 | 1.776 | 5.245 | 0.546 |
C1, R2 | 0.064 | 1.325 | 2.939 | 0.442 | 0.072 | 1.684 | 3.344 | 0.534 |
C1, R3 | 0.057 | 1.374 | 3.124 | 0.433 | 0.068 | 1.788 | 4.002 | 0.522 |
C1, R4 | 0.058 | 1.276 | 2.752 | 0.433 | 0.083 | 1.596 | 2.472 | 0.504 |
C2, R1 | 0.063 | 0.568 | 2.655 | 0.918 | 0.100 | 1.607 | 4.163 | 0.487 |
C2, R2 | 0.068 | 0.592 | 2.677 | 0.927 | 0.104 | 1.613 | 4.558 | 0.491 |
C2, R3 | 0.061 | 0.576 | 2.668 | 0.966 | 0.100 | 1.742 | 5.025 | 0.518 |
C2, R4 | 0.066 | 0.595 | 2.793 | 0.968 | 0.112 | 1.764 | 6.263 | 0.526 |
MEFL/particle:
Hour 0: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 |
---|---|---|---|---|---|---|---|---|
C1, R1 | 1.31E+05 | -3.22E+05 | 1.51E+06 | -4.35E+05 | 4.24E+04 | 1.18E+06 | 7.46E+05 | 4.50E+05 |
C1, R2 | 2.97E+05 | 2.16E+05 | 1.60E+06 | -3.75E+05 | 5.05E+04 | 1.42E+06 | 7.89E+05 | 4.61E+05 |
C1, R3 | 3.18E+04 | 1.57E+05 | 1.50E+06 | -7.95E+06 | 4.75E+04 | 1.03E+06 | 6.57E+05 | 3.91E+05 |
C1, R4 | 4.90E+04 | -9011826 | 1.57E+06 | -7.01E+06 | 1.70E+05 | 1.06E+06 | 9.75E+05 | 4.08E+05 |
C2, R1 | 1.02E+05 | 3.06E+05 | 1.50E+06 | 4.85E+05 | 5.43E+05 | 1.49E+06 | 1.24E+06 | 6.98E+05 |
C2, R2 | -3.67E+03 | 1.18E+05 | 2.09E+06 | 3.90E+05 | 3.87E+05 | 1.32E+06 | 1.15E+06 | 5.36E+05 |
C2, R3 | 9.40E+03 | 1.85E+05 | 2.09E+06 | 1.52E+05 | 4.22E+05 | 9.06E+05 | 1.11E+06 | 5.88E+05 |
C2, R4 | -1.18E+06 | -1.03E+06 | 1.28E+06 | -6.76E+05 | -6.50E+05 | 3.73E+05 | 2.95E+05 | 1.11E+05 |
Hour 6: | Neg. Control | Pos. Control | Device 1 | Device 2 | Device 3 | Device 4 | Device 5 | Device 6 |
---|---|---|---|---|---|---|---|---|
C1, R1 | 1.45E+04 | 4.34E+05 | 1.01E+06 | 1.34E+05 | 2.02E+04 | 5.61E+05 | 1.66E+06 | 1.73E+05 |
C1, R2 | 2.02E+04 | 4.19E+05 | 9.29E+05 | 1.40E+05 | 2.27E+04 | 5.32E+05 | 1.06E+06 | 1.69E+05 |
C1, R3 | 1.80E+04 | 4.34E+05 | 9.87E+05 | 1.37E+05 | 2.15E+04 | 5.65E+05 | 1.26E+06 | 1.65E+05 |
C1, R4 | 1.83E+04 | 4.03E+05 | 8.70E+05 | 1.37E+05 | 2.64E+04 | 5.05E+05 | 7.81E+05 | 1.59E+05 |
C2, R1 | 1.98E+04 | 1.80E+05 | 8.39E+05 | 2.90E+05 | 3.15E+04 | 5.08E+05 | 1.32E+06 | 1.54E+05 |
C2, R2 | 2.14E+04 | 1.87E+05 | 8.46E+05 | 2.93E+05 | 3.27E+04 | 5.10E+05 | 1.44E+06 | 1.55E+05 |
C2, R3 | 1.92E+04 | 1.82E+05 | 8.43E+0.5 | 3.05E+05 | 3.17E+04 | 5.51E+05 | 1.59E+06 | 1.64E+05 |
C2, R4 | 2.10E+04 | 1.88E+05 | 8.83E+05 | 3.06E+05 | 3.54E+04 | 5.61E+05 | 1.98E+06 | 1.66E+05 |