Line 1: | Line 1: | ||
{{NCHU_Taichung/navbar}} | {{NCHU_Taichung/navbar}} | ||
<html> | <html> | ||
+ | <script type="text/javascript" src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> | ||
+ | <script type="text/x-mathjax-config"> | ||
+ | MathJax.Hub.Config({ | ||
+ | tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} | ||
+ | }); | ||
+ | </script> | ||
<div class="ui main text container"> | <div class="ui main text container"> | ||
<div class="ui segments"> | <div class="ui segments"> | ||
Line 13: | Line 19: | ||
</div> | </div> | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</html> | </html> | ||
{{NCHU_Taichung/footer}} | {{NCHU_Taichung/footer}} |
Revision as of 13:44, 13 October 2018
Model
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$