Team:SUSTech Shenzhen/References

References

About CRISPR-Cas9


Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Feng, Z. (2013). Genome engineering using the crispr-cas9 system. Nature Protocols, 8(11), 2281-2308.

Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166), 80-84.


About Wnt signaling pathway


Huo H.X., Xie Y., Zhang Y., Charlat O., Oster E., Avello M., Lei H., Mickanin C., Liu D., Ruffner H., Mao X.H., Ma Q.C., Zamponi R., Bouwmeester T., Finan P.M., Kirschner P.M., Porter J.A., Serluca F.C., Cong F.(2012).ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, pages195–200 (10 May 2012).

Arce L., Yokoyam N.N., Waterman M.L. (2006). Diversity of LEF/TCF action in development and disease. Oncogene volume25, pages7492–7504 (04 December 2006).

Yu J., Chia J., Canning C.A., Jones C.M., Bard F.A., Virshup D.M. (2014). WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Dev Cell. 2014 May 12;29(3):277-91.

Tang, X. et al. Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev. Biol. 364, 32–41 (2012).

Herr, P. & Basler, K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361, 392–402 (2012).

Théry, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes Dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).


About Double emulsion system and its applications


Macosko E.Z., Basu A., Satija R., Shalek A.K., Regev A., McCarroll SA. (2015). Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. VOLUME 161, ISSUE 5, P1202-1214, MAY 21, 2015.

Dekosky, B. (2013). High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nature Biotechnology,31(2), 166-169.

Larsen, A. C., Dunn, M. R., Hatch, A., Sau, S. P., Youngbull, C., & Chaput, J. C. (2016). A general strategy for expanding polymerase function by droplet microfluidics. Nature Communications, 7, 11235.

Terekhov, S. S., Smirnov, I. V., Stepanova, A. V., Bobik, T. V., Mokrushina, Y. A., & Ponomarenko, N. A., et al. (2017). Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. PNAS, 114(10), 201621226.

Tumarkin, E., Tzadu, L., Csaszar, E., Seo, M., Zhang, H., & Lee, A., et al. (2011). High-throughput combinatorial cell co-culture using microfluidics. Integrative Biology Quantitative Biosciences from Nano to Macro, 3(6), 653-662.

Chong DT, Liu XS, Ma HJ, Huang GY, Han YL, Xu F*. Advances in fabricating double-emulsion droplets and their biomedical applications[J]. Microfluidics and Nanofluidics, 2015, 19(5): 1071-1090.

Levin, I., & Aharoni, A. (2012). Evolution in microfluidic droplet. Chemistry & Biology, 19(8), 929-931.

Zhang, Y., Ho, Y. P., Chiu, Y. L., Chan, H. F., Chlebina, B., & Schuhmann, T., et al. (2013). A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials, 34(19), 4564-4572.


Figures and tables:


Most pictures are taken by our camera and design by our team members.


Most demonstrated figures of micro-well system came from the paper:

Wu, C., Chen, R., Liu, Y., Yu, Z., Jiang, Y., & Cheng, X. (2017). A planar dielectrophoresis-based chip for high-throughput cell pairing. Lab on A Chip, 17(23), 4008.


Some demonstrated figures of double emulsion system came from the PowerPoint of the company and the website:

Double Emulsions | Dolomite Microfluidics. (2018). Retrieved from https://www.dolomite-microfluidics.com/applications/double-emulsions/.


Other figures derived from open source are listed below:

In Methods page:

Figure 4:

File:CRISPR-Cas9-biologist.jpg - Wikimedia Commons. (2018). Retrieved from https://commons.wikimedia.org/wiki/File:CRISPR-Cas9-biologist.jpg.

Figure 5:

Addgene.org. (2018). Addgene: Lentiviral Guide. [online] Available at: http://www.addgene.org/viral-vectors/lentivirus/lenti-guide/#second-generation.

Vectors, L. (2018). Lentiviral vectors | EPFL. Retrieved from https://tronolab.epfl.ch/page-148628-en.html.

Figure 6:

Viruses and Viral Diseases - ppt download. (2018). Retrieved from http://slideplayer.com/slide/6863612/.

Figure 7:

Inc., N. (2018). Eclipse Ts2 | Inverted Microscopes | Products | Nikon Instruments - Microscopes and Imaging Systems. Retrieved from https://www.nikoninstruments.com/Products/Inverted-Microscopes/Eclipse-Ts2.

Figure 8:

Flow Cytometry Guide - Creative Diagnostics. (2018). Retrieved from https://www.creative-diagnostics.com/flow-cytometry-guide.htm.

Figure 9:

Introduction to CancerSeq™ Paraffin Tissue Section and Block - Bio-Connect. (2018). Retrieved from https://www.bio-connect.nl/cancerseq-paraffin-tissue-section-and-block/cnt/page/2430.